Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem3 Structured version   Visualization version   GIF version

Theorem lincresunit3lem3 41577
 Description: Lemma 3 for lincresunit3 41584. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit3lem3.b 𝐵 = (Base‘𝑀)
lincresunit3lem3.r 𝑅 = (Scalar‘𝑀)
lincresunit3lem3.e 𝐸 = (Base‘𝑅)
lincresunit3lem3.u 𝑈 = (Unit‘𝑅)
lincresunit3lem3.n 𝑁 = (invg𝑅)
lincresunit3lem3.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincresunit3lem3 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lincresunit3lem3
StepHypRef Expression
1 3simpa 1056 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
21adantr 481 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
3 lincresunit3lem3.b . . . . . . . 8 𝐵 = (Base‘𝑀)
4 lincresunit3lem3.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
5 lincresunit3lem3.t . . . . . . . 8 · = ( ·𝑠𝑀)
6 eqid 2621 . . . . . . . 8 (1r𝑅) = (1r𝑅)
73, 4, 5, 6lmodvs1 18823 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
82, 7syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
94lmodring 18803 . . . . . . . . . . . 12 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1093ad2ant1 1080 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
1110adantr 481 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
12 lincresunit3lem3.u . . . . . . . . . . . . 13 𝑈 = (Unit‘𝑅)
13 lincresunit3lem3.n . . . . . . . . . . . . 13 𝑁 = (invg𝑅)
1412, 13unitnegcl 18613 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
159, 14sylan 488 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
16153ad2antl1 1221 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
1711, 16jca 554 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
18 eqid 2621 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
19 eqid 2621 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2012, 18, 19, 6unitlinv 18609 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2117, 20syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2221eqcomd 2627 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (1r𝑅) = (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)))
2322oveq1d 6625 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
248, 23eqtr3d 2657 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
2524adantr 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
26 simpl1 1062 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑀 ∈ LMod)
27 lincresunit3lem3.e . . . . . . . . . . 11 𝐸 = (Base‘𝑅)
2812, 18, 27ringinvcl 18608 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
2917, 28syl 17 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
304lmodfgrp 18804 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
31303ad2ant1 1080 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
3227, 12unitcl 18591 . . . . . . . . . 10 (𝐴𝑈𝐴𝐸)
3327, 13grpinvcl 17399 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐴𝐸) → (𝑁𝐴) ∈ 𝐸)
3431, 32, 33syl2an 494 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝐸)
35 simpl2 1063 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋𝐵)
3629, 34, 353jca 1240 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵))
3726, 36jca 554 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
3837adantr 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
393, 4, 5, 27, 19lmodvsass 18820 . . . . . 6 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
4038, 39syl 17 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
41 oveq2 6618 . . . . . 6 (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4241adantl 482 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4326adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑀 ∈ LMod)
44 simpl3 1064 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑌𝐵)
4529, 34, 443jca 1240 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4645adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4743, 46jca 554 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)))
483, 4, 5, 27, 19lmodvsass 18820 . . . . . . 7 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4947, 48syl 17 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
5017adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
5150, 20syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
5251oveq1d 6625 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = ((1r𝑅) · 𝑌))
5349, 52eqtr3d 2657 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)) = ((1r𝑅) · 𝑌))
5440, 42, 533eqtrd 2659 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = ((1r𝑅) · 𝑌))
55 3simpb 1057 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5655adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5756adantr 481 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
583, 4, 5, 6lmodvs1 18823 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5957, 58syl 17 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((1r𝑅) · 𝑌) = 𝑌)
6025, 54, 593eqtrd 2659 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = 𝑌)
6160ex 450 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → 𝑋 = 𝑌))
62 oveq2 6618 . 2 (𝑋 = 𝑌 → ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌))
6361, 62impbid1 215 1 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ‘cfv 5852  (class class class)co 6610  Basecbs 15792  .rcmulr 15874  Scalarcsca 15876   ·𝑠 cvsca 15877  Grpcgrp 17354  invgcminusg 17355  1rcur 18433  Ringcrg 18479  Unitcui 18571  invrcinvr 18603  LModclmod 18795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-mgp 18422  df-ur 18434  df-ring 18481  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-lmod 18797 This theorem is referenced by:  lincresunit3  41584
 Copyright terms: Public domain W3C validator