Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunitlem2 Structured version   Visualization version   GIF version

Theorem lincresunitlem2 44524
Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunitlem2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)

Proof of Theorem lincresunitlem2
StepHypRef Expression
1 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
21lmodring 19636 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
323ad2ant2 1130 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
43adantr 483 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝑅 ∈ Ring)
54adantr 483 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → 𝑅 ∈ Ring)
6 lincresunit.b . . . 4 𝐵 = (Base‘𝑀)
7 lincresunit.e . . . 4 𝐸 = (Base‘𝑅)
8 lincresunit.u . . . 4 𝑈 = (Unit‘𝑅)
9 lincresunit.0 . . . 4 0 = (0g𝑅)
10 lincresunit.z . . . 4 𝑍 = (0g𝑀)
11 lincresunit.n . . . 4 𝑁 = (invg𝑅)
12 lincresunit.i . . . 4 𝐼 = (invr𝑅)
13 lincresunit.t . . . 4 · = (.r𝑅)
14 lincresunit.g . . . 4 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
156, 1, 7, 8, 9, 10, 11, 12, 13, 14lincresunitlem1 44523 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
1615adantr 483 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸)
17 elmapi 8422 . . . . 5 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
18 ffvelrn 6844 . . . . . 6 ((𝐹:𝑆𝐸𝑌𝑆) → (𝐹𝑌) ∈ 𝐸)
1918ex 415 . . . . 5 (𝐹:𝑆𝐸 → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2017, 19syl 17 . . . 4 (𝐹 ∈ (𝐸m 𝑆) → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2120ad2antrl 726 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝑌𝑆 → (𝐹𝑌) ∈ 𝐸))
2221imp 409 . 2 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → (𝐹𝑌) ∈ 𝐸)
237, 13ringcl 19305 . 2 ((𝑅 ∈ Ring ∧ (𝐼‘(𝑁‘(𝐹𝑋))) ∈ 𝐸 ∧ (𝐹𝑌) ∈ 𝐸) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
245, 16, 22, 23syl3anc 1367 1 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑌𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑌)) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cdif 3933  𝒫 cpw 4539  {csn 4561  cmpt 5139  wf 6346  cfv 6350  (class class class)co 7150  m cmap 8400  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562  0gc0g 16707  invgcminusg 18098  Ringcrg 19291  Unitcui 19383  invrcinvr 19415  LModclmod 19628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-lmod 19630
This theorem is referenced by:  lincresunit1  44525  lincresunit2  44526  lincresunit3lem1  44527  lincresunit3  44529
  Copyright terms: Public domain W3C validator