Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscmcl Structured version   Visualization version   GIF version

Theorem lincscmcl 42037
Description: The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscmcl.s · = ( ·𝑠𝑀)
lincscmcl.r 𝑅 = (Base‘(Scalar‘𝑀))
Assertion
Ref Expression
lincscmcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincscmcl
Dummy variables 𝑠 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2609 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 lincscmcl.r . . . . 5 𝑅 = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 42017 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
54adantr 479 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
6 simpl 471 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ LMod)
76ad2antrr 757 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝑀 ∈ LMod)
8 simpr 475 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → 𝐶𝑅)
98adantr 479 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶𝑅)
10 simprl 789 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
11 lincscmcl.s . . . . . . 7 · = ( ·𝑠𝑀)
121, 2, 11, 3lmodvscl 18652 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶𝑅𝐷 ∈ (Base‘𝑀)) → (𝐶 · 𝐷) ∈ (Base‘𝑀))
137, 9, 10, 12syl3anc 1317 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 · 𝐷) ∈ (Base‘𝑀))
142lmodring 18643 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
1514ad2antrr 757 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → (Scalar‘𝑀) ∈ Ring)
1615adantl 480 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (Scalar‘𝑀) ∈ Ring)
1716adantr 479 . . . . . . . . . . . . . 14 (((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → (Scalar‘𝑀) ∈ Ring)
188adantl 480 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝐶𝑅)
1918adantr 479 . . . . . . . . . . . . . 14 (((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → 𝐶𝑅)
20 elmapi 7743 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑅𝑚 𝑉) → 𝑥:𝑉𝑅)
21 ffvelrn 6250 . . . . . . . . . . . . . . . . . . 19 ((𝑥:𝑉𝑅𝑣𝑉) → (𝑥𝑣) ∈ 𝑅)
2221ex 448 . . . . . . . . . . . . . . . . . 18 (𝑥:𝑉𝑅 → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2320, 22syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑅𝑚 𝑉) → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2423adantr 479 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2524ad2antrr 757 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2625imp 443 . . . . . . . . . . . . . 14 (((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → (𝑥𝑣) ∈ 𝑅)
27 eqid 2609 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑀)) = (.r‘(Scalar‘𝑀))
283, 27ringcl 18333 . . . . . . . . . . . . . 14 (((Scalar‘𝑀) ∈ Ring ∧ 𝐶𝑅 ∧ (𝑥𝑣) ∈ 𝑅) → (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)) ∈ 𝑅)
2917, 19, 26, 28syl3anc 1317 . . . . . . . . . . . . 13 (((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)) ∈ 𝑅)
30 eqid 2609 . . . . . . . . . . . . 13 (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))
3129, 30fmptd 6277 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))):𝑉𝑅)
32 fvex 6098 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑀)) ∈ V
333, 32eqeltri 2683 . . . . . . . . . . . . 13 𝑅 ∈ V
34 simpr 475 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
3534adantr 479 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → 𝑉 ∈ 𝒫 (Base‘𝑀))
3635adantl 480 . . . . . . . . . . . . 13 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
37 elmapg 7735 . . . . . . . . . . . . 13 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅𝑚 𝑉) ↔ (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))):𝑉𝑅))
3833, 36, 37sylancr 693 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅𝑚 𝑉) ↔ (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))):𝑉𝑅))
3931, 38mpbird 245 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅𝑚 𝑉))
4015, 35, 83jca 1234 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ((Scalar‘𝑀) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐶𝑅))
4140adantl 480 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → ((Scalar‘𝑀) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐶𝑅))
42 simpl 471 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ (𝑅𝑚 𝑉))
4342ad2antrr 757 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝑥 ∈ (𝑅𝑚 𝑉))
44 simprl 789 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
4544ad2antrr 757 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
463rmfsupp 41971 . . . . . . . . . . . 12 ((((Scalar‘𝑀) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐶𝑅) ∧ 𝑥 ∈ (𝑅𝑚 𝑉) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)))
4741, 43, 45, 46syl3anc 1317 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)))
48 oveq2 6535 . . . . . . . . . . . . . . 15 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
4948adantl 480 . . . . . . . . . . . . . 14 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
5049adantl 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
5150ad2antrr 757 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
52 simprl 789 . . . . . . . . . . . . 13 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
5342adantr 479 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) → 𝑥 ∈ (𝑅𝑚 𝑉))
5453, 8anim12i 587 . . . . . . . . . . . . 13 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑥 ∈ (𝑅𝑚 𝑉) ∧ 𝐶𝑅))
55 eqid 2609 . . . . . . . . . . . . . 14 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
5611, 27, 55, 3, 30lincscm 42035 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑥 ∈ (𝑅𝑚 𝑉) ∧ 𝐶𝑅) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))) → (𝐶 · (𝑥( linC ‘𝑀)𝑉)) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
5752, 54, 45, 56syl3anc 1317 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝐶 · (𝑥( linC ‘𝑀)𝑉)) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
5851, 57eqtrd 2643 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
59 breq1 4580 . . . . . . . . . . . . 13 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀))))
60 oveq1 6534 . . . . . . . . . . . . . 14 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → (𝑠( linC ‘𝑀)𝑉) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
6160eqeq2d 2619 . . . . . . . . . . . . 13 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → ((𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉)))
6259, 61anbi12d 742 . . . . . . . . . . . 12 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))))
6362rspcev 3281 . . . . . . . . . . 11 (((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅𝑚 𝑉) ∧ ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6439, 47, 58, 63syl12anc 1315 . . . . . . . . . 10 ((((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6564ex 448 . . . . . . . . 9 (((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6665ex 448 . . . . . . . 8 ((𝑥 ∈ (𝑅𝑚 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6766rexlimiva 3009 . . . . . . 7 (∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6867impcom 444 . . . . . 6 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6968impcom 444 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
701, 2, 3lcoval 42017 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 · 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7170ad2antrr 757 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 · 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ (𝑅𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7213, 69, 71mpbir2and 958 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉))
7372ex 448 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅𝑚 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)))
745, 73sylbid 228 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → (𝐷 ∈ (𝑀 LinCo 𝑉) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)))
75743impia 1252 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wrex 2896  Vcvv 3172  𝒫 cpw 4107   class class class wbr 4577  cmpt 4637  wf 5786  cfv 5790  (class class class)co 6527  𝑚 cmap 7722   finSupp cfsupp 8136  Basecbs 15644  .rcmulr 15718  Scalarcsca 15720   ·𝑠 cvsca 15721  0gc0g 15872  Ringcrg 18319  LModclmod 18635   linC clinc 42009   LinCo clinco 42010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-fzo 12293  df-seq 12622  df-hash 12938  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-0g 15874  df-gsum 15875  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-mhm 17107  df-grp 17197  df-minusg 17198  df-ghm 17430  df-cntz 17522  df-cmn 17967  df-abl 17968  df-mgp 18262  df-ur 18274  df-ring 18321  df-lmod 18637  df-linc 42011  df-lco 42012
This theorem is referenced by:  lincsumscmcl  42038
  Copyright terms: Public domain W3C validator