Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsumcl Structured version   Visualization version   GIF version

Theorem lincsumcl 44480
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypothesis
Ref Expression
lincsumcl.b + = (+g𝑀)
Assertion
Ref Expression
lincsumcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincsumcl
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2821 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2821 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 44461 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)))))
51, 2, 3lcoval 44461 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
64, 5anbi12d 632 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) ↔ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))))
7 simpll 765 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝑀 ∈ LMod)
8 simpll 765 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶 ∈ (Base‘𝑀))
98adantl 484 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐶 ∈ (Base‘𝑀))
10 simprl 769 . . . . . . 7 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
1110adantl 484 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → 𝐷 ∈ (Base‘𝑀))
12 lincsumcl.b . . . . . . 7 + = (+g𝑀)
131, 12lmodvacl 19642 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
147, 9, 11, 13syl3anc 1367 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (Base‘𝑀))
152lmodfgrp 19637 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Grp)
16 grpmnd 18104 . . . . . . . . . . . . . . . . . . 19 ((Scalar‘𝑀) ∈ Grp → (Scalar‘𝑀) ∈ Mnd)
1715, 16syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Mnd)
1817adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) ∈ Mnd)
1918adantl 484 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (Scalar‘𝑀) ∈ Mnd)
20 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
2120adantl 484 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
22 simpll 765 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
23 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2422, 23anim12i 614 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
2524adantr 483 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)))
26 eqid 2821 . . . . . . . . . . . . . . . . 17 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
273, 26ofaddmndmap 44386 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2819, 21, 25, 27syl3anc 1367 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
2917anim1i 616 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
3029adantl 484 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
31 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
3231adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → 𝑦 finSupp (0g‘(Scalar‘𝑀)))
33 simprl 769 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
3432, 33anim12i 614 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
3534adantr 483 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))))
363mndpfsupp 44418 . . . . . . . . . . . . . . . 16 ((((Scalar‘𝑀) ∈ Mnd ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
3730, 25, 35, 36syl3anc 1367 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)))
38 oveq12 7159 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐶 = (𝑦( linC ‘𝑀)𝑉) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
3938expcom 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4039adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4140adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 = (𝑦( linC ‘𝑀)𝑉) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4241com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = (𝑦( linC ‘𝑀)𝑉) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4342adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4443adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4544adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉))))
4645imp 409 . . . . . . . . . . . . . . . . 17 ((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
4746adantr 483 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)))
48 simpr 487 . . . . . . . . . . . . . . . . 17 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
49 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑦( linC ‘𝑀)𝑉) = (𝑦( linC ‘𝑀)𝑉)
50 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
5112, 49, 50, 2, 3, 26lincsum 44478 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀)))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5248, 25, 35, 51syl3anc 1367 . . . . . . . . . . . . . . . 16 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ((𝑦( linC ‘𝑀)𝑉) + (𝑥( linC ‘𝑀)𝑉)) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5347, 52eqtrd 2856 . . . . . . . . . . . . . . 15 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
54 breq1 5061 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀))))
55 oveq1 7157 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → (𝑠( linC ‘𝑀)𝑉) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))
5655eqeq2d 2832 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉)))
5754, 56anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑠 = (𝑦f (+g‘(Scalar‘𝑀))𝑥) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))))
5857rspcev 3622 . . . . . . . . . . . . . . 15 (((𝑦f (+g‘(Scalar‘𝑀))𝑥) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ ((𝑦f (+g‘(Scalar‘𝑀))𝑥) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = ((𝑦f (+g‘(Scalar‘𝑀))𝑥)( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
5928, 37, 53, 58syl12anc 834 . . . . . . . . . . . . . 14 (((((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀))) ∧ (𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) ∧ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6059exp41 437 . . . . . . . . . . . . 13 ((𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6160rexlimiva 3281 . . . . . . . . . . . 12 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → ((𝐶 ∈ (Base‘𝑀) ∧ 𝐷 ∈ (Base‘𝑀)) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6261expd 418 . . . . . . . . . . 11 (∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉)) → (𝐶 ∈ (Base‘𝑀) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))))
6362impcom 410 . . . . . . . . . 10 ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6463com13 88 . . . . . . . . 9 ((𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6564rexlimiva 3281 . . . . . . . 8 (∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))))
6665impcom 410 . . . . . . 7 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6766impcom 410 . . . . . 6 (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6867impcom 410 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
691, 2, 3lcoval 44461 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7069adantr 483 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → ((𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 + 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 + 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7114, 68, 70mpbir2and 711 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ ((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
7271ex 415 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (((𝐶 ∈ (Base‘𝑀) ∧ ∃𝑦 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑦 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐶 = (𝑦( linC ‘𝑀)𝑉))) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
736, 72sylbid 242 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)))
7473imp 409 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  𝒫 cpw 4538   class class class wbr 5058  cfv 6349  (class class class)co 7150  f cof 7401  m cmap 8400   finSupp cfsupp 8827  Basecbs 16477  +gcplusg 16559  Scalarcsca 16562  0gc0g 16707  Mndcmnd 17905  Grpcgrp 18097  LModclmod 19628   linC clinc 44453   LinCo clinco 44454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-linc 44455  df-lco 44456
This theorem is referenced by:  lincsumscmcl  44482
  Copyright terms: Public domain W3C validator