MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff1 Structured version   Visualization version   GIF version

Theorem lindff1 20081
Description: A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindff1.b 𝐵 = (Base‘𝑊)
lindff1.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindff1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)

Proof of Theorem lindff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1061 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊)
2 simp1 1059 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod)
3 lindff1.b . . . 4 𝐵 = (Base‘𝑊)
43lindff 20076 . . 3 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹𝐵)
51, 2, 4syl2anc 692 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹𝐵)
6 simpl1 1062 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑊 ∈ LMod)
7 imassrn 5438 . . . . . . . . . 10 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
8 frn 6012 . . . . . . . . . . 11 (𝐹:dom 𝐹𝐵 → ran 𝐹𝐵)
95, 8syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹𝐵)
107, 9syl5ss 3595 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
1110adantr 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
12 eqid 2621 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
133, 12lspssid 18907 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
146, 11, 13syl2anc 692 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
15 ffun 6007 . . . . . . . . . . 11 (𝐹:dom 𝐹𝐵 → Fun 𝐹)
165, 15syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
1716adantr 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → Fun 𝐹)
18 simprll 801 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ dom 𝐹)
1917, 18jca 554 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
20 eldifsn 4289 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹𝑥𝑦))
2120biimpri 218 . . . . . . . . . 10 ((𝑥 ∈ dom 𝐹𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2221adantlr 750 . . . . . . . . 9 (((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2322adantl 482 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
24 funfvima 6449 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2519, 23, 24sylc 65 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2614, 25sseldd 3585 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
27 simpl2 1063 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐿 ∈ NzRing)
28 simpl3 1064 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐹 LIndF 𝑊)
29 simprlr 802 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑦 ∈ dom 𝐹)
30 lindff1.l . . . . . . . 8 𝐿 = (Scalar‘𝑊)
3112, 30lindfind2 20079 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
326, 27, 28, 29, 31syl211anc 1329 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
33 nelne2 2887 . . . . . 6 (((𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹𝑥) ≠ (𝐹𝑦))
3426, 32, 33syl2anc 692 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3534expr 642 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
3635necon4d 2814 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3736ralrimivva 2965 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
38 dff13 6469 . 2 (𝐹:dom 𝐹1-1𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
395, 37, 38sylanbrc 697 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  cdif 3553  wss 3556  {csn 4150   class class class wbr 4615  dom cdm 5076  ran crn 5077  cima 5079  Fun wfun 5843  wf 5845  1-1wf1 5846  cfv 5849  Basecbs 15784  Scalarcsca 15868  LModclmod 18787  LSpanclspn 18893  NzRingcnzr 19179   LIndF clindf 20065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-plusg 15878  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-grp 17349  df-mgp 18414  df-ur 18426  df-ring 18473  df-lmod 18789  df-lss 18855  df-lsp 18894  df-nzr 19180  df-lindf 20067
This theorem is referenced by:  islindf3  20087  matunitlindflem2  33059
  Copyright terms: Public domain W3C validator