MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind2 Structured version   Visualization version   GIF version

Theorem lindsind2 20957
Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind2.k 𝐾 = (LSpan‘𝑊)
lindfind2.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindsind2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))

Proof of Theorem lindsind2
StepHypRef Expression
1 simp1 1132 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → (𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing))
2 linds2 20949 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
323ad2ant2 1130 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
4 dmresi 5915 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
54eleq2i 2904 . . . . 5 (𝐸 ∈ dom ( I ↾ 𝐹) ↔ 𝐸𝐹)
65biimpri 230 . . . 4 (𝐸𝐹𝐸 ∈ dom ( I ↾ 𝐹))
763ad2ant3 1131 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → 𝐸 ∈ dom ( I ↾ 𝐹))
8 lindfind2.k . . . 4 𝐾 = (LSpan‘𝑊)
9 lindfind2.l . . . 4 𝐿 = (Scalar‘𝑊)
108, 9lindfind2 20956 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ ( I ↾ 𝐹) LIndF 𝑊𝐸 ∈ dom ( I ↾ 𝐹)) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))))
111, 3, 7, 10syl3anc 1367 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ (( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))))
12 fvresi 6929 . . . 4 (𝐸𝐹 → (( I ↾ 𝐹)‘𝐸) = 𝐸)
134difeq1i 4094 . . . . . . . 8 (dom ( I ↾ 𝐹) ∖ {𝐸}) = (𝐹 ∖ {𝐸})
1413imaeq2i 5921 . . . . . . 7 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸}))
15 difss 4107 . . . . . . . 8 (𝐹 ∖ {𝐸}) ⊆ 𝐹
16 resiima 5938 . . . . . . . 8 ((𝐹 ∖ {𝐸}) ⊆ 𝐹 → (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸}))
1715, 16ax-mp 5 . . . . . . 7 (( I ↾ 𝐹) “ (𝐹 ∖ {𝐸})) = (𝐹 ∖ {𝐸})
1814, 17eqtri 2844 . . . . . 6 (( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸})) = (𝐹 ∖ {𝐸})
1918fveq2i 6667 . . . . 5 (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸}))
2019a1i 11 . . . 4 (𝐸𝐹 → (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) = (𝐾‘(𝐹 ∖ {𝐸})))
2112, 20eleq12d 2907 . . 3 (𝐸𝐹 → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))))
22213ad2ant3 1131 . 2 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ((( I ↾ 𝐹)‘𝐸) ∈ (𝐾‘(( I ↾ 𝐹) “ (dom ( I ↾ 𝐹) ∖ {𝐸}))) ↔ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))))
2311, 22mtbid 326 1 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cdif 3932  wss 3935  {csn 4560   class class class wbr 5058   I cid 5453  dom cdm 5549  cres 5551  cima 5552  cfv 6349  Scalarcsca 16562  LModclmod 19628  LSpanclspn 19737  NzRingcnzr 20024   LIndF clindf 20942  LIndSclinds 20943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-nzr 20025  df-lindf 20944  df-linds 20945
This theorem is referenced by:  islinds4  20973  lindsadd  34879  lindsdom  34880  lindsenlbs  34881  aacllem  44896
  Copyright terms: Public domain W3C validator