Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem4 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem4 41568
Description: Lemma 4 for lindslinindsimp2 41570. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Distinct variable groups:   𝐵,𝑓,𝑦   𝑓,𝑀,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥,𝑦   𝑦,𝑉   𝑓,𝑍,𝑦   0 ,𝑓,𝑥,𝑦   𝑦,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑦,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem4
StepHypRef Expression
1 simpr 477 . . . . . . . . . . . . 13 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
21adantr 481 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
3 simprl 793 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ⊆ (Base‘𝑀))
4 elpwg 4144 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
54ad2antrr 761 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
63, 5mpbird 247 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀))
7 simpr 477 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥𝑆)
87adantl 482 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑥𝑆)
92, 6, 83jca 1240 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
109adantl 482 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
11 simpl 473 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ))
12 lindslinind.g . . . . . . . . . . 11 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
1312a1i 11 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
14 eqid 2621 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
15 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
16 lindslinind.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
17 eqid 2621 . . . . . . . . . . 11 ( ·𝑠𝑀) = ( ·𝑠𝑀)
18 eqid 2621 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
19 lindslinind.0 . . . . . . . . . . 11 0 = (0g𝑅)
2014, 15, 16, 17, 18, 19lincdifsn 41531 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2110, 11, 13, 20syl3anc 1323 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2221eqeq1d 2623 . . . . . . . 8 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
23 lmodgrp 18810 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2423adantl 482 . . . . . . . . . 10 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ Grp)
2524ad2antrl 763 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ Grp)
261ad2antrl 763 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ LMod)
27 elmapi 7839 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐵𝑚 𝑆) → 𝑓:𝑆𝐵)
28 ffvelrn 6323 . . . . . . . . . . . . . . . 16 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
2928expcom 451 . . . . . . . . . . . . . . 15 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3029ad2antll 764 . . . . . . . . . . . . . 14 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3130com12 32 . . . . . . . . . . . . 13 (𝑓:𝑆𝐵 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3227, 31syl 17 . . . . . . . . . . . 12 (𝑓 ∈ (𝐵𝑚 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3332adantr 481 . . . . . . . . . . 11 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3433imp 445 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓𝑥) ∈ 𝐵)
35 ssel2 3583 . . . . . . . . . . 11 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑀))
3635ad2antll 764 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥 ∈ (Base‘𝑀))
3714, 15, 17, 16lmodvscl 18820 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑓𝑥) ∈ 𝐵𝑥 ∈ (Base‘𝑀)) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3826, 34, 36, 37syl3anc 1323 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
39 difexg 4778 . . . . . . . . . . . . 13 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
4039ad2antrr 761 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
41 ssdifss 3725 . . . . . . . . . . . . 13 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4241ad2antrl 763 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4340, 42jca 554 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
4443adantl 482 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
45 simprl 793 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆𝑉𝑀 ∈ LMod))
46 simpl 473 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝑀))
4746ad2antll 764 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑆 ⊆ (Base‘𝑀))
487ad2antll 764 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥𝑆)
49 simpl 473 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵𝑚 𝑆))
5049adantr 481 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑓 ∈ (𝐵𝑚 𝑆))
51 lindslinind.z . . . . . . . . . . . . 13 𝑍 = (0g𝑀)
52 lindslinind.y . . . . . . . . . . . . 13 𝑌 = ((invg𝑅)‘(𝑓𝑥))
5315, 16, 19, 51, 52, 12lindslinindimp2lem2 41566 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵𝑚 𝑆))) → 𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})))
5445, 47, 48, 50, 53syl13anc 1325 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})))
55 simpr 477 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5655adantl 482 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5715, 16, 19, 51, 52, 12lindslinindimp2lem3 41567 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 )
5845, 56, 11, 57syl3anc 1323 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 finSupp 0 )
5954, 58jca 554 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 ))
6014, 15, 16, 19lincfsuppcl 41520 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
6126, 44, 59, 60syl3anc 1323 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
62 eqid 2621 . . . . . . . . . 10 (invg𝑀) = (invg𝑀)
6314, 18, 51, 62grpinvid2 17411 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6425, 38, 61, 63syl3anc 1323 . . . . . . . 8 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6522, 64bitr4d 271 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
66 eqcom 2628 . . . . . . . 8 (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)))
6715fveq2i 6161 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6816, 67eqtri 2643 . . . . . . . . . . . . 13 𝐵 = (Base‘(Scalar‘𝑀))
6968oveq1i 6625 . . . . . . . . . . . 12 (𝐵𝑚 (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥}))
7054, 69syl6eleq 2708 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})))
71 elpwg 4144 . . . . . . . . . . . . . 14 ((𝑆 ∖ {𝑥}) ∈ V → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7240, 71syl 17 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7342, 72mpbird 247 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7473adantl 482 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
75 lincval 41516 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7626, 70, 74, 75syl3anc 1323 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7776eqeq1d 2623 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥))))
7812fveq1i 6159 . . . . . . . . . . . . . . . 16 (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)
7978a1i 11 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦))
80 fvres 6174 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
8180adantl 482 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
8279, 81eqtrd 2655 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = (𝑓𝑦))
8382oveq1d 6630 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺𝑦)( ·𝑠𝑀)𝑦) = ((𝑓𝑦)( ·𝑠𝑀)𝑦))
8483mpteq2dva 4714 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦)))
8584oveq2d 6631 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))))
86 eqid 2621 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
8728ex 450 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝑆𝐵 → (𝑥𝑆 → (𝑓𝑥) ∈ 𝐵))
8827, 87syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (𝐵𝑚 𝑆) → (𝑥𝑆 → (𝑓𝑥) ∈ 𝐵))
8988com12 32 . . . . . . . . . . . . . . . . 17 (𝑥𝑆 → (𝑓 ∈ (𝐵𝑚 𝑆) → (𝑓𝑥) ∈ 𝐵))
9089ad2antll 764 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓 ∈ (𝐵𝑚 𝑆) → (𝑓𝑥) ∈ 𝐵))
9190com12 32 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝐵𝑚 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
9291adantr 481 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
9392imp 445 . . . . . . . . . . . . 13 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓𝑥) ∈ 𝐵)
9414, 15, 17, 62, 16, 86, 26, 36, 93lmodvsneg 18847 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9552eqcomi 2630 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝑓𝑥)) = 𝑌
9695a1i 11 . . . . . . . . . . . . 13 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑅)‘(𝑓𝑥)) = 𝑌)
9796oveq1d 6630 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑌( ·𝑠𝑀)𝑥))
9894, 97eqtrd 2655 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝑌( ·𝑠𝑀)𝑥))
9985, 98eqeq12d 2636 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10099biimpd 219 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10177, 100sylbid 230 . . . . . . . 8 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10266, 101syl5bi 232 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10365, 102sylbid 230 . . . . . 6 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
104103ex 450 . . . . 5 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
105104com23 86 . . . 4 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
1061053impia 1258 . . 3 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
107106com12 32 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
1081073impia 1258 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3190  cdif 3557  wss 3560  𝒫 cpw 4136  {csn 4155   class class class wbr 4623  cmpt 4683  cres 5086  wf 5853  cfv 5857  (class class class)co 6615  𝑚 cmap 7817   finSupp cfsupp 8235  Basecbs 15800  +gcplusg 15881  Scalarcsca 15884   ·𝑠 cvsca 15885  0gc0g 16040   Σg cgsu 16041  Grpcgrp 17362  invgcminusg 17363  LModclmod 18803   linC clinc 41511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-0g 16042  df-gsum 16043  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-lmod 18805  df-linc 41513
This theorem is referenced by:  lindslinindsimp2lem5  41569
  Copyright terms: Public domain W3C validator