MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsss Structured version   Visualization version   GIF version

Theorem lindsss 20082
Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindsss ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))

Proof of Theorem lindsss
StepHypRef Expression
1 eqid 2621 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
21linds1 20068 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
32adantl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊))
4 sstr2 3590 . . . 4 (𝐺𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊)))
53, 4syl5com 31 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺𝐹𝐺 ⊆ (Base‘𝑊)))
653impia 1258 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ⊆ (Base‘𝑊))
7 simp1 1059 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
8 linds2 20069 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
983ad2ant2 1081 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
10 lindfres 20081 . . . 4 ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
117, 9, 10syl2anc 692 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
12 resabs1 5386 . . . . 5 (𝐺𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺))
1312breq1d 4623 . . . 4 (𝐺𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
14133ad2ant3 1082 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
1511, 14mpbid 222 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐺) LIndF 𝑊)
161islinds 20067 . . 3 (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
17163ad2ant1 1080 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
186, 15, 17mpbir2and 956 1 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987  wss 3555   class class class wbr 4613   I cid 4984  cres 5076  cfv 5847  Basecbs 15781  LModclmod 18784   LIndF clindf 20062  LIndSclinds 20063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-slot 15785  df-base 15786  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lindf 20064  df-linds 20065
This theorem is referenced by:  islinds4  20093
  Copyright terms: Public domain W3C validator