Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineintmo Structured version   Visualization version   GIF version

Theorem lineintmo 33613
Description: Two distinct lines intersect in at most one point. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineintmo ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∃*𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem lineintmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 an4 654 . . . . . . 7 (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐵𝑦𝐵)))
2 linethru 33609 . . . . . . . . . . . . 13 ((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → 𝐴 = (𝑥Line𝑦))
323expa 1114 . . . . . . . . . . . 12 (((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) → 𝐴 = (𝑥Line𝑦))
4 linethru 33609 . . . . . . . . . . . . 13 ((𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑥𝑦) → 𝐵 = (𝑥Line𝑦))
543expa 1114 . . . . . . . . . . . 12 (((𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑥𝑦) → 𝐵 = (𝑥Line𝑦))
6 eqtr3 2843 . . . . . . . . . . . 12 ((𝐴 = (𝑥Line𝑦) ∧ 𝐵 = (𝑥Line𝑦)) → 𝐴 = 𝐵)
73, 5, 6syl2an 597 . . . . . . . . . . 11 ((((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥𝑦) ∧ ((𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑥𝑦)) → 𝐴 = 𝐵)
87anandirs 677 . . . . . . . . . 10 ((((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵))) ∧ 𝑥𝑦) → 𝐴 = 𝐵)
98ex 415 . . . . . . . . 9 (((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵))) → (𝑥𝑦𝐴 = 𝐵))
109necon1d 3038 . . . . . . . 8 (((𝐴 ∈ LinesEE ∧ (𝑥𝐴𝑦𝐴)) ∧ (𝐵 ∈ LinesEE ∧ (𝑥𝐵𝑦𝐵))) → (𝐴𝐵𝑥 = 𝑦))
1110an4s 658 . . . . . . 7 (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐵𝑦𝐵))) → (𝐴𝐵𝑥 = 𝑦))
121, 11sylan2b 595 . . . . . 6 (((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) ∧ ((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵))) → (𝐴𝐵𝑥 = 𝑦))
1312ex 415 . . . . 5 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → (𝐴𝐵𝑥 = 𝑦)))
1413com23 86 . . . 4 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE) → (𝐴𝐵 → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦)))
15143impia 1113 . . 3 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → (((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
1615alrimivv 1925 . 2 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
17 eleq1w 2895 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
18 eleq1w 2895 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
1917, 18anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
2019mo4 2646 . 2 (∃*𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥𝑦(((𝑥𝐴𝑥𝐵) ∧ (𝑦𝐴𝑦𝐵)) → 𝑥 = 𝑦))
2116, 20sylibr 236 1 ((𝐴 ∈ LinesEE ∧ 𝐵 ∈ LinesEE ∧ 𝐴𝐵) → ∃*𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  ∃*wmo 2616  wne 3016  (class class class)co 7150  Linecline2 33590  LinesEEclines2 33592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-ee 26671  df-btwn 26672  df-cgr 26673  df-ofs 33439  df-colinear 33495  df-ifs 33496  df-cgr3 33497  df-fs 33498  df-line2 33593  df-lines2 33595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator