Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindscl Structured version   Visualization version   GIF version

Theorem linindscl 44500
Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
linindscl (𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))

Proof of Theorem linindscl
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2821 . . 3 (0g𝑀) = (0g𝑀)
3 eqid 2821 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2821 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
5 eqid 2821 . . 3 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
61, 2, 3, 4, 5linindsi 44496 . 2 (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
76simpld 497 1 (𝑆 linIndS 𝑀𝑆 ∈ 𝒫 (Base‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  𝒫 cpw 4538   class class class wbr 5058  cfv 6349  (class class class)co 7150  m cmap 8400   finSupp cfsupp 8827  Basecbs 16477  Scalarcsca 16562  0gc0g 16707   linC clinc 44453   linIndS clininds 44489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-iota 6308  df-fv 6357  df-ov 7153  df-lininds 44491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator