Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Structured version   Visualization version   GIF version

Theorem lkr0f 34801
 Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d 𝐷 = (Scalar‘𝑊)
lkr0f.o 0 = (0g𝐷)
lkr0f.v 𝑉 = (Base‘𝑊)
lkr0f.f 𝐹 = (LFnl‘𝑊)
lkr0f.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkr0f ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
2 eqid 2724 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 lkr0f.v . . . . . . 7 𝑉 = (Base‘𝑊)
4 lkr0f.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 34770 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
6 ffn 6158 . . . . . 6 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
75, 6syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
87adantr 472 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 Fn 𝑉)
9 lkr0f.o . . . . . . 7 0 = (0g𝐷)
10 lkr0f.k . . . . . . 7 𝐾 = (LKer‘𝑊)
111, 9, 4, 10lkrval 34795 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
1211eqeq1d 2726 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
1312biimpa 502 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → (𝐺 “ { 0 }) = 𝑉)
14 fvex 6314 . . . . . . 7 (0g𝐷) ∈ V
159, 14eqeltri 2799 . . . . . 6 0 ∈ V
1615fconst2 6586 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
17 fconst4 6594 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
1816, 17bitr3i 266 . . . 4 (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
198, 13, 18sylanbrc 701 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 }))
2019ex 449 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
2118biimpi 206 . . . . . 6 (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
2221adantl 473 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
23 simpr 479 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 }))
24 eqid 2724 . . . . . . . . . . 11 (LFnl‘𝑊) = (LFnl‘𝑊)
251, 9, 3, 24lfl0f 34776 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2625adantr 472 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2723, 26eqeltrd 2803 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊))
281, 9, 24, 10lkrval 34795 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾𝐺) = (𝐺 “ { 0 }))
2927, 28syldan 488 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = (𝐺 “ { 0 }))
3029eqeq1d 2726 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
31 ffn 6158 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉)
3216, 31sylbir 225 . . . . . . . 8 (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉)
3332adantl 473 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉)
3433biantrurd 530 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3530, 34bitrd 268 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3622, 35mpbird 247 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = 𝑉)
3736ex 449 . . 3 (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3837adantr 472 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3920, 38impbid 202 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103  Vcvv 3304  {csn 4285   × cxp 5216  ◡ccnv 5217   “ cima 5221   Fn wfn 5996  ⟶wf 5997  ‘cfv 6001  Basecbs 15980  Scalarcsca 16067  0gc0g 16223  LModclmod 18986  LFnlclfn 34764  LKerclk 34792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-plusg 16077  df-0g 16225  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-grp 17547  df-mgp 18611  df-ring 18670  df-lmod 18988  df-lfl 34765  df-lkr 34793 This theorem is referenced by:  lkrscss  34805  eqlkr  34806  lkrshp  34812  lkrshp3  34813  lkrshpor  34814  lfl1dim  34828  lfl1dim2N  34829  lkr0f2  34868  lclkrlem1  37214  lclkrlem2j  37224  lclkr  37241  lclkrs  37247  mapd0  37373
 Copyright terms: Public domain W3C validator