Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Structured version   Visualization version   GIF version

Theorem lkr0f 33858
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d 𝐷 = (Scalar‘𝑊)
lkr0f.o 0 = (0g𝐷)
lkr0f.v 𝑉 = (Base‘𝑊)
lkr0f.f 𝐹 = (LFnl‘𝑊)
lkr0f.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkr0f ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
2 eqid 2621 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 lkr0f.v . . . . . . 7 𝑉 = (Base‘𝑊)
4 lkr0f.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 33827 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
6 ffn 6002 . . . . . 6 (𝐺:𝑉⟶(Base‘𝐷) → 𝐺 Fn 𝑉)
75, 6syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
87adantr 481 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 Fn 𝑉)
9 lkr0f.o . . . . . . 7 0 = (0g𝐷)
10 lkr0f.k . . . . . . 7 𝐾 = (LKer‘𝑊)
111, 9, 4, 10lkrval 33852 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
1211eqeq1d 2623 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
1312biimpa 501 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → (𝐺 “ { 0 }) = 𝑉)
14 fvex 6158 . . . . . . 7 (0g𝐷) ∈ V
159, 14eqeltri 2694 . . . . . 6 0 ∈ V
1615fconst2 6424 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
17 fconst4 6432 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
1816, 17bitr3i 266 . . . 4 (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
198, 13, 18sylanbrc 697 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 }))
2019ex 450 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
2118biimpi 206 . . . . . 6 (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
2221adantl 482 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
23 simpr 477 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 }))
24 eqid 2621 . . . . . . . . . . 11 (LFnl‘𝑊) = (LFnl‘𝑊)
251, 9, 3, 24lfl0f 33833 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2625adantr 481 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2723, 26eqeltrd 2698 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊))
281, 9, 24, 10lkrval 33852 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾𝐺) = (𝐺 “ { 0 }))
2927, 28syldan 487 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = (𝐺 “ { 0 }))
3029eqeq1d 2623 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
31 ffn 6002 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉)
3216, 31sylbir 225 . . . . . . . 8 (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉)
3332adantl 482 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉)
3433biantrurd 529 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3530, 34bitrd 268 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3622, 35mpbird 247 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = 𝑉)
3736ex 450 . . 3 (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3837adantr 481 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3920, 38impbid 202 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  {csn 4148   × cxp 5072  ccnv 5073  cima 5077   Fn wfn 5842  wf 5843  cfv 5847  Basecbs 15781  Scalarcsca 15865  0gc0g 16021  LModclmod 18784  LFnlclfn 33821  LKerclk 33849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-mgp 18411  df-ring 18470  df-lmod 18786  df-lfl 33822  df-lkr 33850
This theorem is referenced by:  lkrscss  33862  eqlkr  33863  lkrshp  33869  lkrshp3  33870  lkrshpor  33871  lfl1dim  33885  lfl1dim2N  33886  lkr0f2  33925  lclkrlem1  36272  lclkrlem2j  36282  lclkr  36299  lclkrs  36305  mapd0  36431
  Copyright terms: Public domain W3C validator