Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkreqN Structured version   Visualization version   GIF version

Theorem lkreqN 36298
Description: Proportional functionals have equal kernels. (Contributed by NM, 28-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkreq.s 𝑆 = (Scalar‘𝑊)
lkreq.r 𝑅 = (Base‘𝑆)
lkreq.o 0 = (0g𝑆)
lkreq.f 𝐹 = (LFnl‘𝑊)
lkreq.k 𝐾 = (LKer‘𝑊)
lkreq.d 𝐷 = (LDual‘𝑊)
lkreq.t · = ( ·𝑠𝐷)
lkreq.w (𝜑𝑊 ∈ LVec)
lkreq.a (𝜑𝐴 ∈ (𝑅 ∖ { 0 }))
lkreq.h (𝜑𝐻𝐹)
lkreq.g (𝜑𝐺 = (𝐴 · 𝐻))
Assertion
Ref Expression
lkreqN (𝜑 → (𝐾𝐺) = (𝐾𝐻))

Proof of Theorem lkreqN
StepHypRef Expression
1 lkreq.g . . . . . . . . 9 (𝜑𝐺 = (𝐴 · 𝐻))
21eqeq1d 2821 . . . . . . . 8 (𝜑 → (𝐺 = (0g𝐷) ↔ (𝐴 · 𝐻) = (0g𝐷)))
3 eqid 2819 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
4 lkreq.t . . . . . . . . . 10 · = ( ·𝑠𝐷)
5 eqid 2819 . . . . . . . . . 10 (Scalar‘𝐷) = (Scalar‘𝐷)
6 eqid 2819 . . . . . . . . . 10 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
7 eqid 2819 . . . . . . . . . 10 (0g‘(Scalar‘𝐷)) = (0g‘(Scalar‘𝐷))
8 eqid 2819 . . . . . . . . . 10 (0g𝐷) = (0g𝐷)
9 lkreq.d . . . . . . . . . . 11 𝐷 = (LDual‘𝑊)
10 lkreq.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
119, 10lduallvec 36282 . . . . . . . . . 10 (𝜑𝐷 ∈ LVec)
12 lkreq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ (𝑅 ∖ { 0 }))
1312eldifad 3946 . . . . . . . . . . 11 (𝜑𝐴𝑅)
14 lkreq.s . . . . . . . . . . . 12 𝑆 = (Scalar‘𝑊)
15 lkreq.r . . . . . . . . . . . 12 𝑅 = (Base‘𝑆)
1614, 15, 9, 5, 6, 10ldualsbase 36261 . . . . . . . . . . 11 (𝜑 → (Base‘(Scalar‘𝐷)) = 𝑅)
1713, 16eleqtrrd 2914 . . . . . . . . . 10 (𝜑𝐴 ∈ (Base‘(Scalar‘𝐷)))
18 lkreq.f . . . . . . . . . . 11 𝐹 = (LFnl‘𝑊)
19 lkreq.h . . . . . . . . . . 11 (𝜑𝐻𝐹)
2018, 9, 3, 10, 19ldualelvbase 36255 . . . . . . . . . 10 (𝜑𝐻 ∈ (Base‘𝐷))
213, 4, 5, 6, 7, 8, 11, 17, 20lvecvs0or 19872 . . . . . . . . 9 (𝜑 → ((𝐴 · 𝐻) = (0g𝐷) ↔ (𝐴 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = (0g𝐷))))
22 lkreq.o . . . . . . . . . . . . 13 0 = (0g𝑆)
23 lveclmod 19870 . . . . . . . . . . . . . 14 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2410, 23syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LMod)
2514, 22, 9, 5, 7, 24ldual0 36275 . . . . . . . . . . . 12 (𝜑 → (0g‘(Scalar‘𝐷)) = 0 )
2625eqeq2d 2830 . . . . . . . . . . 11 (𝜑 → (𝐴 = (0g‘(Scalar‘𝐷)) ↔ 𝐴 = 0 ))
27 eldifsni 4714 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑅 ∖ { 0 }) → 𝐴0 )
2812, 27syl 17 . . . . . . . . . . . . 13 (𝜑𝐴0 )
2928a1d 25 . . . . . . . . . . . 12 (𝜑 → (𝐻 ≠ (0g𝐷) → 𝐴0 ))
3029necon4d 3038 . . . . . . . . . . 11 (𝜑 → (𝐴 = 0𝐻 = (0g𝐷)))
3126, 30sylbid 242 . . . . . . . . . 10 (𝜑 → (𝐴 = (0g‘(Scalar‘𝐷)) → 𝐻 = (0g𝐷)))
32 idd 24 . . . . . . . . . 10 (𝜑 → (𝐻 = (0g𝐷) → 𝐻 = (0g𝐷)))
3331, 32jaod 855 . . . . . . . . 9 (𝜑 → ((𝐴 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = (0g𝐷)) → 𝐻 = (0g𝐷)))
3421, 33sylbid 242 . . . . . . . 8 (𝜑 → ((𝐴 · 𝐻) = (0g𝐷) → 𝐻 = (0g𝐷)))
352, 34sylbid 242 . . . . . . 7 (𝜑 → (𝐺 = (0g𝐷) → 𝐻 = (0g𝐷)))
36 nne 3018 . . . . . . 7 𝐻 ≠ (0g𝐷) ↔ 𝐻 = (0g𝐷))
3735, 36syl6ibr 254 . . . . . 6 (𝜑 → (𝐺 = (0g𝐷) → ¬ 𝐻 ≠ (0g𝐷)))
3837con3d 155 . . . . 5 (𝜑 → (¬ ¬ 𝐻 ≠ (0g𝐷) → ¬ 𝐺 = (0g𝐷)))
3938orrd 859 . . . 4 (𝜑 → (¬ 𝐻 ≠ (0g𝐷) ∨ ¬ 𝐺 = (0g𝐷)))
40 ianor 978 . . . 4 (¬ (𝐻 ≠ (0g𝐷) ∧ 𝐺 = (0g𝐷)) ↔ (¬ 𝐻 ≠ (0g𝐷) ∨ ¬ 𝐺 = (0g𝐷)))
4139, 40sylibr 236 . . 3 (𝜑 → ¬ (𝐻 ≠ (0g𝐷) ∧ 𝐺 = (0g𝐷)))
42 df-pss 3952 . . . . . 6 ((𝐾𝐻) ⊊ (𝐾𝐺) ↔ ((𝐾𝐻) ⊆ (𝐾𝐺) ∧ (𝐾𝐻) ≠ (𝐾𝐺)))
43 lkreq.k . . . . . . 7 𝐾 = (LKer‘𝑊)
4418, 14, 15, 9, 4, 24, 13, 19ldualvscl 36267 . . . . . . . 8 (𝜑 → (𝐴 · 𝐻) ∈ 𝐹)
451, 44eqeltrd 2911 . . . . . . 7 (𝜑𝐺𝐹)
4618, 43, 9, 8, 10, 19, 45lkrpssN 36291 . . . . . 6 (𝜑 → ((𝐾𝐻) ⊊ (𝐾𝐺) ↔ (𝐻 ≠ (0g𝐷) ∧ 𝐺 = (0g𝐷))))
4742, 46syl5rbbr 288 . . . . 5 (𝜑 → ((𝐻 ≠ (0g𝐷) ∧ 𝐺 = (0g𝐷)) ↔ ((𝐾𝐻) ⊆ (𝐾𝐺) ∧ (𝐾𝐻) ≠ (𝐾𝐺))))
4814, 15, 18, 43, 9, 4, 10, 19, 13lkrss 36296 . . . . . . 7 (𝜑 → (𝐾𝐻) ⊆ (𝐾‘(𝐴 · 𝐻)))
491fveq2d 6667 . . . . . . 7 (𝜑 → (𝐾𝐺) = (𝐾‘(𝐴 · 𝐻)))
5048, 49sseqtrrd 4006 . . . . . 6 (𝜑 → (𝐾𝐻) ⊆ (𝐾𝐺))
5150biantrurd 535 . . . . 5 (𝜑 → ((𝐾𝐻) ≠ (𝐾𝐺) ↔ ((𝐾𝐻) ⊆ (𝐾𝐺) ∧ (𝐾𝐻) ≠ (𝐾𝐺))))
5247, 51bitr4d 284 . . . 4 (𝜑 → ((𝐻 ≠ (0g𝐷) ∧ 𝐺 = (0g𝐷)) ↔ (𝐾𝐻) ≠ (𝐾𝐺)))
5352necon2bbid 3057 . . 3 (𝜑 → ((𝐾𝐻) = (𝐾𝐺) ↔ ¬ (𝐻 ≠ (0g𝐷) ∧ 𝐺 = (0g𝐷))))
5441, 53mpbird 259 . 2 (𝜑 → (𝐾𝐻) = (𝐾𝐺))
5554eqcomd 2825 1 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1531  wcel 2108  wne 3014  cdif 3931  wss 3934  wpss 3935  {csn 4559  cfv 6348  (class class class)co 7148  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  LModclmod 19626  LVecclvec 19866  LFnlclfn 36185  LKerclk 36213  LDualcld 36251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867  df-lshyp 36105  df-lfl 36186  df-lkr 36214  df-ldual 36252
This theorem is referenced by:  lkrlspeqN  36299  lcdlkreq2N  38751
  Copyright terms: Public domain W3C validator