Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrpssN Structured version   Visualization version   GIF version

Theorem lkrpssN 34276
 Description: Proper subset relation between kernels. (Contributed by NM, 16-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrpss.f 𝐹 = (LFnl‘𝑊)
lkrpss.k 𝐾 = (LKer‘𝑊)
lkrpss.d 𝐷 = (LDual‘𝑊)
lkrpss.o 0 = (0g𝐷)
lkrpss.w (𝜑𝑊 ∈ LVec)
lkrpss.g (𝜑𝐺𝐹)
lkrpss.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrpssN (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))

Proof of Theorem lkrpssN
StepHypRef Expression
1 df-pss 3588 . . 3 ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
2 simpr 477 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (𝐾𝐻))
3 eqid 2621 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
4 lkrpss.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
5 lkrpss.k . . . . . . . . . 10 𝐾 = (LKer‘𝑊)
6 lkrpss.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
7 lveclmod 19100 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
9 lkrpss.h . . . . . . . . . 10 (𝜑𝐻𝐹)
103, 4, 5, 8, 9lkrssv 34209 . . . . . . . . 9 (𝜑 → (𝐾𝐻) ⊆ (Base‘𝑊))
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐻) ⊆ (Base‘𝑊))
122, 11psssstrd 3714 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ⊊ (Base‘𝑊))
1312pssned 3703 . . . . . 6 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → (𝐾𝐺) ≠ (Base‘𝑊))
141, 13sylan2br 493 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐺) ≠ (Base‘𝑊))
15 simplr 792 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
16 eqid 2621 . . . . . . . . . . 11 (LSHyp‘𝑊) = (LSHyp‘𝑊)
176ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → 𝑊 ∈ LVec)
18 simpr 477 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
19 simplr 792 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
2010ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) ⊆ (Base‘𝑊))
21 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) = (Base‘𝑊))
22 simpllr 799 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ⊆ (𝐾𝐻))
2321, 22eqsstr3d 3638 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (Base‘𝑊) ⊆ (𝐾𝐻))
2420, 23eqssd 3618 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐻) = (Base‘𝑊))
253, 16, 4, 5, 6, 9lkrshp4 34221 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2625ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ((𝐾𝐻) ≠ (Base‘𝑊) ↔ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
2726necon1bbid 2832 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
2824, 27mpbird 247 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
2919, 28pm2.21dd 186 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) ∧ (𝐾𝐺) = (Base‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
30 lkrpss.g . . . . . . . . . . . . . 14 (𝜑𝐺𝐹)
313, 16, 4, 5, 6, 30lkrshpor 34220 . . . . . . . . . . . . 13 (𝜑 → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3231ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ∈ (LSHyp‘𝑊) ∨ (𝐾𝐺) = (Base‘𝑊)))
3318, 29, 32mpjaodan 827 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) ∈ (LSHyp‘𝑊))
34 simpr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐻) ∈ (LSHyp‘𝑊))
3516, 17, 33, 34lshpcmp 34101 . . . . . . . . . 10 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ (𝐾𝐺) = (𝐾𝐻)))
3615, 35mpbid 222 . . . . . . . . 9 (((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) ∧ (𝐾𝐻) ∈ (LSHyp‘𝑊)) → (𝐾𝐺) = (𝐾𝐻))
3736ex 450 . . . . . . . 8 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐻) ∈ (LSHyp‘𝑊) → (𝐾𝐺) = (𝐾𝐻)))
3837necon3ad 2806 . . . . . . 7 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ((𝐾𝐺) ≠ (𝐾𝐻) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊)))
3938impr 649 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ¬ (𝐾𝐻) ∈ (LSHyp‘𝑊))
4025necon1bbid 2832 . . . . . . 7 (𝜑 → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4140adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (¬ (𝐾𝐻) ∈ (LSHyp‘𝑊) ↔ (𝐾𝐻) = (Base‘𝑊)))
4239, 41mpbid 222 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → (𝐾𝐻) = (Base‘𝑊))
4314, 42jca 554 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻))) → ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)))
443, 4, 5, 8, 30lkrssv 34209 . . . . . . 7 (𝜑 → (𝐾𝐺) ⊆ (Base‘𝑊))
4544adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (Base‘𝑊))
46 simprr 796 . . . . . . 7 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐻) = (Base‘𝑊))
4746eqcomd 2627 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (Base‘𝑊) = (𝐾𝐻))
4845, 47sseqtrd 3639 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ⊆ (𝐾𝐻))
49 simprl 794 . . . . . 6 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (Base‘𝑊))
5049, 47neeqtrd 2862 . . . . 5 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → (𝐾𝐺) ≠ (𝐾𝐻))
5148, 50jca 554 . . . 4 ((𝜑 ∧ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))) → ((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)))
5243, 51impbida 877 . . 3 (𝜑 → (((𝐾𝐺) ⊆ (𝐾𝐻) ∧ (𝐾𝐺) ≠ (𝐾𝐻)) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
531, 52syl5bb 272 . 2 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ ((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊))))
54 lkrpss.d . . . . 5 𝐷 = (LDual‘𝑊)
55 lkrpss.o . . . . 5 0 = (0g𝐷)
563, 4, 5, 54, 55, 8, 30lkr0f2 34274 . . . 4 (𝜑 → ((𝐾𝐺) = (Base‘𝑊) ↔ 𝐺 = 0 ))
5756necon3bid 2837 . . 3 (𝜑 → ((𝐾𝐺) ≠ (Base‘𝑊) ↔ 𝐺0 ))
583, 4, 5, 54, 55, 8, 9lkr0f2 34274 . . 3 (𝜑 → ((𝐾𝐻) = (Base‘𝑊) ↔ 𝐻 = 0 ))
5957, 58anbi12d 747 . 2 (𝜑 → (((𝐾𝐺) ≠ (Base‘𝑊) ∧ (𝐾𝐻) = (Base‘𝑊)) ↔ (𝐺0𝐻 = 0 )))
6053, 59bitrd 268 1 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺0𝐻 = 0 )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1482   ∈ wcel 1989   ≠ wne 2793   ⊆ wss 3572   ⊊ wpss 3573  ‘cfv 5886  Basecbs 15851  0gc0g 16094  LModclmod 18857  LVecclvec 19096  LSHypclsh 34088  LFnlclfn 34170  LKerclk 34198  LDualcld 34236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-subg 17585  df-cntz 17744  df-lsm 18045  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-oppr 18617  df-dvdsr 18635  df-unit 18636  df-invr 18666  df-drng 18743  df-lmod 18859  df-lss 18927  df-lsp 18966  df-lvec 19097  df-lshyp 34090  df-lfl 34171  df-lkr 34199  df-ldual 34237 This theorem is referenced by:  lkrss2N  34282  lkreqN  34283
 Copyright terms: Public domain W3C validator