![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrsc | Structured version Visualization version GIF version |
Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 9-Oct-2014.) |
Ref | Expression |
---|---|
lkrsc.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrsc.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkrsc.k | ⊢ 𝐾 = (Base‘𝐷) |
lkrsc.t | ⊢ · = (.r‘𝐷) |
lkrsc.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrsc.l | ⊢ 𝐿 = (LKer‘𝑊) |
lkrsc.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lkrsc.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lkrsc.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
lkrsc.o | ⊢ 0 = (0g‘𝐷) |
lkrsc.e | ⊢ (𝜑 → 𝑅 ≠ 0 ) |
Ref | Expression |
---|---|
lkrsc | ⊢ (𝜑 → (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrsc.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
2 | fvex 6239 | . . . . . . . . 9 ⊢ (Base‘𝑊) ∈ V | |
3 | 1, 2 | eqeltri 2726 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ V) |
5 | lkrsc.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
6 | lkrsc.w | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | lkrsc.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
8 | lkrsc.d | . . . . . . . . . 10 ⊢ 𝐷 = (Scalar‘𝑊) | |
9 | lkrsc.k | . . . . . . . . . 10 ⊢ 𝐾 = (Base‘𝐷) | |
10 | lkrsc.f | . . . . . . . . . 10 ⊢ 𝐹 = (LFnl‘𝑊) | |
11 | 8, 9, 1, 10 | lflf 34668 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
12 | 6, 7, 11 | syl2anc 694 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
13 | ffn 6083 | . . . . . . . 8 ⊢ (𝐺:𝑉⟶𝐾 → 𝐺 Fn 𝑉) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 Fn 𝑉) |
15 | eqidd 2652 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) = (𝐺‘𝑣)) | |
16 | 4, 5, 14, 15 | ofc2 6963 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = ((𝐺‘𝑣) · 𝑅)) |
17 | 16 | eqeq1d 2653 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ ((𝐺‘𝑣) · 𝑅) = 0 )) |
18 | lkrsc.o | . . . . . 6 ⊢ 0 = (0g‘𝐷) | |
19 | lkrsc.t | . . . . . 6 ⊢ · = (.r‘𝐷) | |
20 | 8 | lvecdrng 19153 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐷 ∈ DivRing) |
21 | 6, 20 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ DivRing) |
22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐷 ∈ DivRing) |
23 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
24 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
25 | simpr 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
26 | 8, 9, 1, 10 | lflcl 34669 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
27 | 23, 24, 25, 26 | syl3anc 1366 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐺‘𝑣) ∈ 𝐾) |
28 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ∈ 𝐾) |
29 | lkrsc.e | . . . . . . 7 ⊢ (𝜑 → 𝑅 ≠ 0 ) | |
30 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑅 ≠ 0 ) |
31 | 9, 18, 19, 22, 27, 28, 30 | drngmuleq0 18818 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺‘𝑣) · 𝑅) = 0 ↔ (𝐺‘𝑣) = 0 )) |
32 | 17, 31 | bitrd 268 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ↔ (𝐺‘𝑣) = 0 )) |
33 | 32 | pm5.32da 674 | . . 3 ⊢ (𝜑 → ((𝑣 ∈ 𝑉 ∧ ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
34 | lveclmod 19154 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
35 | 6, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
36 | 1, 8, 9, 19, 10, 35, 7, 5 | lflvscl 34682 | . . . 4 ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {𝑅})) ∈ 𝐹) |
37 | lkrsc.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
38 | 1, 8, 18, 10, 37 | ellkr 34694 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∘𝑓 · (𝑉 × {𝑅})) ∈ 𝐹) → (𝑣 ∈ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
39 | 6, 36, 38 | syl2anc 694 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) ↔ (𝑣 ∈ 𝑉 ∧ ((𝐺 ∘𝑓 · (𝑉 × {𝑅}))‘𝑣) = 0 ))) |
40 | 1, 8, 18, 10, 37 | ellkr 34694 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
41 | 6, 7, 40 | syl2anc 694 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = 0 ))) |
42 | 33, 39, 41 | 3bitr4d 300 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) ↔ 𝑣 ∈ (𝐿‘𝐺))) |
43 | 42 | eqrdv 2649 | 1 ⊢ (𝜑 → (𝐿‘(𝐺 ∘𝑓 · (𝑉 × {𝑅}))) = (𝐿‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 {csn 4210 × cxp 5141 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ∘𝑓 cof 6937 Basecbs 15904 .rcmulr 15989 Scalarcsca 15991 0gc0g 16147 DivRingcdr 18795 LModclmod 18911 LVecclvec 19150 LFnlclfn 34662 LKerclk 34690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-drng 18797 df-lmod 18913 df-lvec 19151 df-lfl 34663 df-lkr 34691 |
This theorem is referenced by: lkrscss 34703 ldualkrsc 34772 |
Copyright terms: Public domain | W3C validator |