Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrss2N Structured version   Visualization version   GIF version

Theorem lkrss2N 33971
Description: Two functionals with kernels in a subset relationship. (Contributed by NM, 17-Feb-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lkrss2.s 𝑆 = (Scalar‘𝑊)
lkrss2.r 𝑅 = (Base‘𝑆)
lkrss2.f 𝐹 = (LFnl‘𝑊)
lkrss2.k 𝐾 = (LKer‘𝑊)
lkrss2.d 𝐷 = (LDual‘𝑊)
lkrss2.t · = ( ·𝑠𝐷)
lkrss2.w (𝜑𝑊 ∈ LVec)
lkrss2.g (𝜑𝐺𝐹)
lkrss2.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lkrss2N (𝜑 → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺)))
Distinct variable groups:   𝐹,𝑟   𝐺,𝑟   𝐻,𝑟   𝐾,𝑟   𝑅,𝑟   𝑆,𝑟   𝑊,𝑟   𝜑,𝑟   · ,𝑟
Allowed substitution hint:   𝐷(𝑟)

Proof of Theorem lkrss2N
StepHypRef Expression
1 sspss 3689 . . 3 ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ ((𝐾𝐺) ⊊ (𝐾𝐻) ∨ (𝐾𝐺) = (𝐾𝐻)))
2 lkrss2.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
3 lkrss2.k . . . . . . 7 𝐾 = (LKer‘𝑊)
4 lkrss2.d . . . . . . 7 𝐷 = (LDual‘𝑊)
5 eqid 2621 . . . . . . 7 (0g𝐷) = (0g𝐷)
6 lkrss2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
7 lkrss2.g . . . . . . 7 (𝜑𝐺𝐹)
8 lkrss2.h . . . . . . 7 (𝜑𝐻𝐹)
92, 3, 4, 5, 6, 7, 8lkrpssN 33965 . . . . . 6 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) ↔ (𝐺 ≠ (0g𝐷) ∧ 𝐻 = (0g𝐷))))
10 lveclmod 19038 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
116, 10syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
12 lkrss2.s . . . . . . . . . . . 12 𝑆 = (Scalar‘𝑊)
13 lkrss2.r . . . . . . . . . . . 12 𝑅 = (Base‘𝑆)
14 eqid 2621 . . . . . . . . . . . 12 (0g𝑆) = (0g𝑆)
1512, 13, 14lmod0cl 18821 . . . . . . . . . . 11 (𝑊 ∈ LMod → (0g𝑆) ∈ 𝑅)
1611, 15syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑆) ∈ 𝑅)
1716adantr 481 . . . . . . . . 9 ((𝜑𝐻 = (0g𝐷)) → (0g𝑆) ∈ 𝑅)
18 simpr 477 . . . . . . . . . 10 ((𝜑𝐻 = (0g𝐷)) → 𝐻 = (0g𝐷))
19 lkrss2.t . . . . . . . . . . . 12 · = ( ·𝑠𝐷)
202, 12, 14, 4, 19, 5, 11, 7ldual0vs 33962 . . . . . . . . . . 11 (𝜑 → ((0g𝑆) · 𝐺) = (0g𝐷))
2120adantr 481 . . . . . . . . . 10 ((𝜑𝐻 = (0g𝐷)) → ((0g𝑆) · 𝐺) = (0g𝐷))
2218, 21eqtr4d 2658 . . . . . . . . 9 ((𝜑𝐻 = (0g𝐷)) → 𝐻 = ((0g𝑆) · 𝐺))
23 oveq1 6617 . . . . . . . . . . 11 (𝑟 = (0g𝑆) → (𝑟 · 𝐺) = ((0g𝑆) · 𝐺))
2423eqeq2d 2631 . . . . . . . . . 10 (𝑟 = (0g𝑆) → (𝐻 = (𝑟 · 𝐺) ↔ 𝐻 = ((0g𝑆) · 𝐺)))
2524rspcev 3298 . . . . . . . . 9 (((0g𝑆) ∈ 𝑅𝐻 = ((0g𝑆) · 𝐺)) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
2617, 22, 25syl2anc 692 . . . . . . . 8 ((𝜑𝐻 = (0g𝐷)) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
2726ex 450 . . . . . . 7 (𝜑 → (𝐻 = (0g𝐷) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺)))
2827adantld 483 . . . . . 6 (𝜑 → ((𝐺 ≠ (0g𝐷) ∧ 𝐻 = (0g𝐷)) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺)))
299, 28sylbid 230 . . . . 5 (𝜑 → ((𝐾𝐺) ⊊ (𝐾𝐻) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺)))
3029imp 445 . . . 4 ((𝜑 ∧ (𝐾𝐺) ⊊ (𝐾𝐻)) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
316adantr 481 . . . . 5 ((𝜑 ∧ (𝐾𝐺) = (𝐾𝐻)) → 𝑊 ∈ LVec)
327adantr 481 . . . . 5 ((𝜑 ∧ (𝐾𝐺) = (𝐾𝐻)) → 𝐺𝐹)
338adantr 481 . . . . 5 ((𝜑 ∧ (𝐾𝐺) = (𝐾𝐻)) → 𝐻𝐹)
34 simpr 477 . . . . 5 ((𝜑 ∧ (𝐾𝐺) = (𝐾𝐻)) → (𝐾𝐺) = (𝐾𝐻))
3512, 13, 2, 3, 4, 19, 31, 32, 33, 34eqlkr4 33967 . . . 4 ((𝜑 ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
3630, 35jaodan 825 . . 3 ((𝜑 ∧ ((𝐾𝐺) ⊊ (𝐾𝐻) ∨ (𝐾𝐺) = (𝐾𝐻))) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
371, 36sylan2b 492 . 2 ((𝜑 ∧ (𝐾𝐺) ⊆ (𝐾𝐻)) → ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺))
386adantr 481 . . . . . . 7 ((𝜑𝑟𝑅) → 𝑊 ∈ LVec)
397adantr 481 . . . . . . 7 ((𝜑𝑟𝑅) → 𝐺𝐹)
40 simpr 477 . . . . . . 7 ((𝜑𝑟𝑅) → 𝑟𝑅)
4112, 13, 2, 3, 4, 19, 38, 39, 40lkrss 33970 . . . . . 6 ((𝜑𝑟𝑅) → (𝐾𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)))
4241ex 450 . . . . 5 (𝜑 → (𝑟𝑅 → (𝐾𝐺) ⊆ (𝐾‘(𝑟 · 𝐺))))
43 fveq2 6153 . . . . . . 7 (𝐻 = (𝑟 · 𝐺) → (𝐾𝐻) = (𝐾‘(𝑟 · 𝐺)))
4443sseq2d 3617 . . . . . 6 (𝐻 = (𝑟 · 𝐺) → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ (𝐾𝐺) ⊆ (𝐾‘(𝑟 · 𝐺))))
4544biimprcd 240 . . . . 5 ((𝐾𝐺) ⊆ (𝐾‘(𝑟 · 𝐺)) → (𝐻 = (𝑟 · 𝐺) → (𝐾𝐺) ⊆ (𝐾𝐻)))
4642, 45syl6 35 . . . 4 (𝜑 → (𝑟𝑅 → (𝐻 = (𝑟 · 𝐺) → (𝐾𝐺) ⊆ (𝐾𝐻))))
4746rexlimdv 3024 . . 3 (𝜑 → (∃𝑟𝑅 𝐻 = (𝑟 · 𝐺) → (𝐾𝐺) ⊆ (𝐾𝐻)))
4847imp 445 . 2 ((𝜑 ∧ ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺)) → (𝐾𝐺) ⊆ (𝐾𝐻))
4937, 48impbida 876 1 (𝜑 → ((𝐾𝐺) ⊆ (𝐾𝐻) ↔ ∃𝑟𝑅 𝐻 = (𝑟 · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  wss 3559  wpss 3560  cfv 5852  (class class class)co 6610  Basecbs 15792  Scalarcsca 15876   ·𝑠 cvsca 15877  0gc0g 16032  LModclmod 18795  LVecclvec 19034  LFnlclfn 33859  LKerclk 33887  LDualcld 33925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-sca 15889  df-vsca 15890  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-cntz 17682  df-lsm 17983  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-drng 18681  df-lmod 18797  df-lss 18865  df-lsp 18904  df-lvec 19035  df-lshyp 33779  df-lfl 33860  df-lkr 33888  df-ldual 33926
This theorem is referenced by:  lcfrvalsnN  36345
  Copyright terms: Public domain W3C validator