Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrval Structured version   Visualization version   GIF version

Theorem lkrval 34693
Description: Value of the kernel of a functional. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lkrfval.d 𝐷 = (Scalar‘𝑊)
lkrfval.o 0 = (0g𝐷)
lkrfval.f 𝐹 = (LFnl‘𝑊)
lkrfval.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrval ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))

Proof of Theorem lkrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lkrfval.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lkrfval.o . . . 4 0 = (0g𝐷)
3 lkrfval.f . . . 4 𝐹 = (LFnl‘𝑊)
4 lkrfval.k . . . 4 𝐾 = (LKer‘𝑊)
51, 2, 3, 4lkrfval 34692 . . 3 (𝑊𝑋𝐾 = (𝑓𝐹 ↦ (𝑓 “ { 0 })))
65fveq1d 6231 . 2 (𝑊𝑋 → (𝐾𝐺) = ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺))
7 cnvexg 7154 . . . 4 (𝐺𝐹𝐺 ∈ V)
8 imaexg 7145 . . . 4 (𝐺 ∈ V → (𝐺 “ { 0 }) ∈ V)
97, 8syl 17 . . 3 (𝐺𝐹 → (𝐺 “ { 0 }) ∈ V)
10 cnveq 5328 . . . . 5 (𝑓 = 𝐺𝑓 = 𝐺)
1110imaeq1d 5500 . . . 4 (𝑓 = 𝐺 → (𝑓 “ { 0 }) = (𝐺 “ { 0 }))
12 eqid 2651 . . . 4 (𝑓𝐹 ↦ (𝑓 “ { 0 })) = (𝑓𝐹 ↦ (𝑓 “ { 0 }))
1311, 12fvmptg 6319 . . 3 ((𝐺𝐹 ∧ (𝐺 “ { 0 }) ∈ V) → ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺) = (𝐺 “ { 0 }))
149, 13mpdan 703 . 2 (𝐺𝐹 → ((𝑓𝐹 ↦ (𝑓 “ { 0 }))‘𝐺) = (𝐺 “ { 0 }))
156, 14sylan9eq 2705 1 ((𝑊𝑋𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  {csn 4210  cmpt 4762  ccnv 5142  cima 5146  cfv 5926  Scalarcsca 15991  0gc0g 16147  LFnlclfn 34662  LKerclk 34690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-lkr 34691
This theorem is referenced by:  ellkr  34694  lkr0f  34699
  Copyright terms: Public domain W3C validator