Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni2 Structured version   Visualization version   GIF version

Theorem llni2 34313
Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.)
Hypotheses
Ref Expression
llni2.j = (join‘𝐾)
llni2.a 𝐴 = (Atoms‘𝐾)
llni2.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)

Proof of Theorem llni2
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1063 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝐴)
2 simpl3 1064 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑄𝐴)
3 simpr 477 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2622 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) = (𝑃 𝑄))
5 neeq1 2852 . . . . 5 (𝑟 = 𝑃 → (𝑟𝑠𝑃𝑠))
6 oveq1 6617 . . . . . 6 (𝑟 = 𝑃 → (𝑟 𝑠) = (𝑃 𝑠))
76eqeq2d 2631 . . . . 5 (𝑟 = 𝑃 → ((𝑃 𝑄) = (𝑟 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑠)))
85, 7anbi12d 746 . . . 4 (𝑟 = 𝑃 → ((𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)) ↔ (𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠))))
9 neeq2 2853 . . . . 5 (𝑠 = 𝑄 → (𝑃𝑠𝑃𝑄))
10 oveq2 6618 . . . . . 6 (𝑠 = 𝑄 → (𝑃 𝑠) = (𝑃 𝑄))
1110eqeq2d 2631 . . . . 5 (𝑠 = 𝑄 → ((𝑃 𝑄) = (𝑃 𝑠) ↔ (𝑃 𝑄) = (𝑃 𝑄)))
129, 11anbi12d 746 . . . 4 (𝑠 = 𝑄 → ((𝑃𝑠 ∧ (𝑃 𝑄) = (𝑃 𝑠)) ↔ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))))
138, 12rspc2ev 3312 . . 3 ((𝑃𝐴𝑄𝐴 ∧ (𝑃𝑄 ∧ (𝑃 𝑄) = (𝑃 𝑄))) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
141, 2, 3, 4, 13syl112anc 1327 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠)))
15 simpl1 1062 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → 𝐾 ∈ HL)
16 eqid 2621 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
17 llni2.j . . . . 5 = (join‘𝐾)
18 llni2.a . . . . 5 𝐴 = (Atoms‘𝐾)
1916, 17, 18hlatjcl 34168 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2019adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (Base‘𝐾))
21 llni2.n . . . 4 𝑁 = (LLines‘𝐾)
2216, 17, 18, 21islln3 34311 . . 3 ((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2315, 20, 22syl2anc 692 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → ((𝑃 𝑄) ∈ 𝑁 ↔ ∃𝑟𝐴𝑠𝐴 (𝑟𝑠 ∧ (𝑃 𝑄) = (𝑟 𝑠))))
2414, 23mpbird 247 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cfv 5852  (class class class)co 6610  Basecbs 15792  joincjn 16876  Atomscatm 34065  HLchlt 34152  LLinesclln 34292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-preset 16860  df-poset 16878  df-plt 16890  df-lub 16906  df-glb 16907  df-join 16908  df-meet 16909  df-p0 16971  df-lat 16978  df-clat 17040  df-oposet 33978  df-ol 33980  df-oml 33981  df-covers 34068  df-ats 34069  df-atl 34100  df-cvlat 34124  df-hlat 34153  df-llines 34299
This theorem is referenced by:  2atneat  34316  islln2a  34318  2at0mat0  34326  ps-2c  34329  lplnnle2at  34342  2atmat  34362  lplnexllnN  34365  dalempjsen  34454  dalemcea  34461  dalem2  34462  dalemdea  34463  dalem16  34480  dalemcjden  34493  dalem23  34497  dalem54  34527  dalem60  34533  llnexchb2  34670  arglem1N  34992  cdlemc5  34997  cdleme20l1  35123  cdleme20l2  35124  cdleme20l  35125  cdleme22b  35144  cdlemeg46req  35332  cdlemh  35620
  Copyright terms: Public domain W3C validator