Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod1i2 Structured version   Visualization version   GIF version

Theorem llnmod1i2 36876
Description: Version of modular law pmod1i 36864 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
llnmod1i2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))

Proof of Theorem llnmod1i2
StepHypRef Expression
1 simpl1 1183 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
2 simpl2 1184 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
3 simprl 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
4 simprr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
5 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
6 atmod.j . . . . . 6 = (join‘𝐾)
7 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 eqid 2818 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
9 eqid 2818 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
105, 6, 7, 8, 9pmapjlln1 36871 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
111, 2, 3, 4, 10syl13anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
121hllatd 36380 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
135, 7atbase 36305 . . . . . . 7 (𝑃𝐴𝑃𝐵)
143, 13syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
155, 7atbase 36305 . . . . . . 7 (𝑄𝐴𝑄𝐵)
164, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
175, 6latjcl 17649 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
1812, 14, 16, 17syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
19 simpl3 1185 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑌𝐵)
20 atmod.l . . . . . 6 = (le‘𝐾)
21 atmod.m . . . . . 6 = (meet‘𝐾)
225, 20, 6, 21, 8, 9hlmod1i 36872 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
231, 2, 18, 19, 22syl13anc 1364 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
2411, 23mpan2d 690 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑋 𝑌 → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
25243impia 1109 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
2625eqcomd 2824 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  Basecbs 16471  lecple 16560  joincjn 17542  meetcmee 17543  Latclat 17643  Atomscatm 36279  HLchlt 36366  pmapcpmap 36513  +𝑃cpadd 36811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-proset 17526  df-poset 17544  df-plt 17556  df-lub 17572  df-glb 17573  df-join 17574  df-meet 17575  df-p0 17637  df-lat 17644  df-clat 17706  df-oposet 36192  df-ol 36194  df-oml 36195  df-covers 36282  df-ats 36283  df-atl 36314  df-cvlat 36338  df-hlat 36367  df-psubsp 36519  df-pmap 36520  df-padd 36812
This theorem is referenced by:  llnmod2i2  36879  dalawlem12  36898
  Copyright terms: Public domain W3C validator