Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod1i2 Structured version   Visualization version   GIF version

Theorem llnmod1i2 35464
 Description: Version of modular law pmod1i 35452 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
llnmod1i2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))

Proof of Theorem llnmod1i2
StepHypRef Expression
1 simpl1 1084 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
2 simpl2 1085 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
3 simprl 809 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
4 simprr 811 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
5 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
6 atmod.j . . . . . 6 = (join‘𝐾)
7 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 eqid 2651 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
9 eqid 2651 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
105, 6, 7, 8, 9pmapjlln1 35459 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
111, 2, 3, 4, 10syl13anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
12 hllat 34968 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
131, 12syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
145, 7atbase 34894 . . . . . . 7 (𝑃𝐴𝑃𝐵)
153, 14syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
165, 7atbase 34894 . . . . . . 7 (𝑄𝐴𝑄𝐵)
174, 16syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
185, 6latjcl 17098 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
1913, 15, 17, 18syl3anc 1366 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
20 simpl3 1086 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑌𝐵)
21 atmod.l . . . . . 6 = (le‘𝐾)
22 atmod.m . . . . . 6 = (meet‘𝐾)
235, 21, 6, 22, 8, 9hlmod1i 35460 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
241, 2, 19, 20, 23syl13anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
2511, 24mpan2d 710 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑋 𝑌 → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
26253impia 1280 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
2726eqcomd 2657 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  lecple 15995  joincjn 16991  meetcmee 16992  Latclat 17092  Atomscatm 34868  HLchlt 34955  pmapcpmap 35101  +𝑃cpadd 35399 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-psubsp 35107  df-pmap 35108  df-padd 35400 This theorem is referenced by:  llnmod2i2  35467  dalawlem12  35486
 Copyright terms: Public domain W3C validator