Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnneat Structured version   Visualization version   GIF version

Theorem llnneat 34619
Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llnneat.a 𝐴 = (Atoms‘𝐾)
llnneat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnneat ((𝐾 ∈ HL ∧ 𝑋𝑁) → ¬ 𝑋𝐴)

Proof of Theorem llnneat
StepHypRef Expression
1 hllat 34469 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2620 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 llnneat.n . . . 4 𝑁 = (LLines‘𝐾)
42, 3llnbase 34614 . . 3 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
5 eqid 2620 . . . 4 (le‘𝐾) = (le‘𝐾)
62, 5latref 17034 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋)
71, 4, 6syl2an 494 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋(le‘𝐾)𝑋)
8 llnneat.a . . . 4 𝐴 = (Atoms‘𝐾)
95, 8, 3llnnleat 34618 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑋𝐴) → ¬ 𝑋(le‘𝐾)𝑋)
1093expia 1265 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑋𝐴 → ¬ 𝑋(le‘𝐾)𝑋))
117, 10mt2d 131 1 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ¬ 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988   class class class wbr 4644  cfv 5876  Basecbs 15838  lecple 15929  Latclat 17026  Atomscatm 34369  HLchlt 34456  LLinesclln 34596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-preset 16909  df-poset 16927  df-plt 16939  df-glb 16956  df-p0 17020  df-lat 17027  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-llines 34603
This theorem is referenced by:  2atneat  34620  islln2a  34622  cdleme22b  35448  cdlemh  35924
  Copyright terms: Public domain W3C validator