Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnset Structured version   Visualization version   GIF version

Theorem llnset 35109
Description: The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnset (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
Distinct variable groups:   𝐴,𝑝   𝑥,𝐵   𝑥,𝑝,𝐾
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑝)   𝐶(𝑥,𝑝)   𝐷(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem llnset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3243 . 2 (𝐾𝐷𝐾 ∈ V)
2 llnset.n . . 3 𝑁 = (LLines‘𝐾)
3 fveq2 6229 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 llnset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2703 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6229 . . . . . . 7 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
7 llnset.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7syl6eqr 2703 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
9 fveq2 6229 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 llnset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10syl6eqr 2703 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 4696 . . . . . 6 (𝑘 = 𝐾 → (𝑝( ⋖ ‘𝑘)𝑥𝑝𝐶𝑥))
138, 12rexeqbidv 3183 . . . . 5 (𝑘 = 𝐾 → (∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥 ↔ ∃𝑝𝐴 𝑝𝐶𝑥))
145, 13rabeqbidv 3226 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
15 df-llines 35102 . . . 4 LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
16 fvex 6239 . . . . . 6 (Base‘𝐾) ∈ V
174, 16eqeltri 2726 . . . . 5 𝐵 ∈ V
1817rabex 4845 . . . 4 {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥} ∈ V
1914, 15, 18fvmpt 6321 . . 3 (𝐾 ∈ V → (LLines‘𝐾) = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
202, 19syl5eq 2697 . 2 (𝐾 ∈ V → 𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
211, 20syl 17 1 (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  Vcvv 3231   class class class wbr 4685  cfv 5926  Basecbs 15904  ccvr 34867  Atomscatm 34868  LLinesclln 35095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-llines 35102
This theorem is referenced by:  islln  35110
  Copyright terms: Public domain W3C validator