MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lly1stc Structured version   Visualization version   GIF version

Theorem lly1stc 22032
Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
lly1stc Locally 1stω = 1stω

Proof of Theorem lly1stc
Dummy variables 𝑗 𝑎 𝑛 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 22008 . . . 4 (𝑗 ∈ Locally 1stω → 𝑗 ∈ Top)
2 simprr 769 . . . . . . . . 9 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → (𝑗t 𝑢) ∈ 1stω)
3 simprl 767 . . . . . . . . . 10 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → 𝑥𝑢)
41ad3antrrr 726 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → 𝑗 ∈ Top)
5 elssuni 4859 . . . . . . . . . . . 12 (𝑢𝑗𝑢 𝑗)
65ad2antlr 723 . . . . . . . . . . 11 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → 𝑢 𝑗)
7 eqid 2818 . . . . . . . . . . . 12 𝑗 = 𝑗
87restuni 21698 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢 𝑗) → 𝑢 = (𝑗t 𝑢))
94, 6, 8syl2anc 584 . . . . . . . . . 10 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → 𝑢 = (𝑗t 𝑢))
103, 9eleqtrd 2912 . . . . . . . . 9 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → 𝑥 (𝑗t 𝑢))
11 eqid 2818 . . . . . . . . . 10 (𝑗t 𝑢) = (𝑗t 𝑢)
12111stcclb 21980 . . . . . . . . 9 (((𝑗t 𝑢) ∈ 1stω ∧ 𝑥 (𝑗t 𝑢)) → ∃𝑡 ∈ 𝒫 (𝑗t 𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))
132, 10, 12syl2anc 584 . . . . . . . 8 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → ∃𝑡 ∈ 𝒫 (𝑗t 𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))
14 elpwi 4547 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ 𝒫 (𝑗t 𝑢) → 𝑡 ⊆ (𝑗t 𝑢))
1514adantl 482 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → 𝑡 ⊆ (𝑗t 𝑢))
1615sselda 3964 . . . . . . . . . . . . . . . 16 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑛 ∈ (𝑗t 𝑢))
174adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → 𝑗 ∈ Top)
18 simpllr 772 . . . . . . . . . . . . . . . . . 18 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → 𝑢𝑗)
19 restopn2 21713 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑛 ∈ (𝑗t 𝑢) ↔ (𝑛𝑗𝑛𝑢)))
2017, 18, 19syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (𝑛 ∈ (𝑗t 𝑢) ↔ (𝑛𝑗𝑛𝑢)))
2120simplbda 500 . . . . . . . . . . . . . . . 16 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛 ∈ (𝑗t 𝑢)) → 𝑛𝑢)
2216, 21syldan 591 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑛𝑢)
23 df-ss 3949 . . . . . . . . . . . . . . 15 (𝑛𝑢 ↔ (𝑛𝑢) = 𝑛)
2422, 23sylib 219 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑢) = 𝑛)
2520simprbda 499 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛 ∈ (𝑗t 𝑢)) → 𝑛𝑗)
2616, 25syldan 591 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑛𝑗)
2724, 26eqeltrd 2910 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑢) ∈ 𝑗)
28 ineq1 4178 . . . . . . . . . . . . . 14 (𝑎 = 𝑛 → (𝑎𝑢) = (𝑛𝑢))
2928cbvmptv 5160 . . . . . . . . . . . . 13 (𝑎𝑡 ↦ (𝑎𝑢)) = (𝑛𝑡 ↦ (𝑛𝑢))
3027, 29fmptd 6870 . . . . . . . . . . . 12 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (𝑎𝑡 ↦ (𝑎𝑢)):𝑡𝑗)
3130frnd 6514 . . . . . . . . . . 11 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
3231adantrr 713 . . . . . . . . . 10 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
33 vex 3495 . . . . . . . . . . 11 𝑗 ∈ V
3433elpw2 5239 . . . . . . . . . 10 (ran (𝑎𝑡 ↦ (𝑎𝑢)) ∈ 𝒫 𝑗 ↔ ran (𝑎𝑡 ↦ (𝑎𝑢)) ⊆ 𝑗)
3532, 34sylibr 235 . . . . . . . . 9 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ∈ 𝒫 𝑗)
36 simprrl 777 . . . . . . . . . 10 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → 𝑡 ≼ ω)
37 1stcrestlem 21988 . . . . . . . . . 10 (𝑡 ≼ ω → ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω)
3836, 37syl 17 . . . . . . . . 9 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω)
39 simprr 769 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑥𝑧)
403ad2antrr 722 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑥𝑢)
4139, 40elind 4168 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑥 ∈ (𝑧𝑢))
42 eleq2 2898 . . . . . . . . . . . . . . 15 (𝑣 = (𝑧𝑢) → (𝑥𝑣𝑥 ∈ (𝑧𝑢)))
43 sseq2 3990 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑧𝑢) → (𝑛𝑣𝑛 ⊆ (𝑧𝑢)))
4443anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑧𝑢) → ((𝑥𝑛𝑛𝑣) ↔ (𝑥𝑛𝑛 ⊆ (𝑧𝑢))))
4544rexbidv 3294 . . . . . . . . . . . . . . 15 (𝑣 = (𝑧𝑢) → (∃𝑛𝑡 (𝑥𝑛𝑛𝑣) ↔ ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢))))
4642, 45imbi12d 346 . . . . . . . . . . . . . 14 (𝑣 = (𝑧𝑢) → ((𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)) ↔ (𝑥 ∈ (𝑧𝑢) → ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)))))
47 simprrr 778 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)))
4847adantr 481 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣)))
494ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑗 ∈ Top)
50 simpllr 772 . . . . . . . . . . . . . . . 16 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → 𝑢𝑗)
5150adantr 481 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑢𝑗)
52 simprl 767 . . . . . . . . . . . . . . 15 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → 𝑧𝑗)
53 elrestr 16690 . . . . . . . . . . . . . . 15 ((𝑗 ∈ Top ∧ 𝑢𝑗𝑧𝑗) → (𝑧𝑢) ∈ (𝑗t 𝑢))
5449, 51, 52, 53syl3anc 1363 . . . . . . . . . . . . . 14 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → (𝑧𝑢) ∈ (𝑗t 𝑢))
5546, 48, 54rspcdva 3622 . . . . . . . . . . . . 13 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → (𝑥 ∈ (𝑧𝑢) → ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢))))
5641, 55mpd 15 . . . . . . . . . . . 12 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → ∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)))
573ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → 𝑥𝑢)
58 elin 4166 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑛𝑢) ↔ (𝑥𝑛𝑥𝑢))
5958simplbi2com 503 . . . . . . . . . . . . . . . . . 18 (𝑥𝑢 → (𝑥𝑛𝑥 ∈ (𝑛𝑢)))
6057, 59syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑥𝑛𝑥 ∈ (𝑛𝑢)))
6122biantrud 532 . . . . . . . . . . . . . . . . . . 19 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑧 ↔ (𝑛𝑧𝑛𝑢)))
62 ssin 4204 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑧𝑛𝑢) ↔ 𝑛 ⊆ (𝑧𝑢))
6361, 62syl6bb 288 . . . . . . . . . . . . . . . . . 18 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛𝑧𝑛 ⊆ (𝑧𝑢)))
64 ssinss1 4211 . . . . . . . . . . . . . . . . . 18 (𝑛𝑧 → (𝑛𝑢) ⊆ 𝑧)
6563, 64syl6bir 255 . . . . . . . . . . . . . . . . 17 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → (𝑛 ⊆ (𝑧𝑢) → (𝑛𝑢) ⊆ 𝑧))
6660, 65anim12d 608 . . . . . . . . . . . . . . . 16 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) ∧ 𝑛𝑡) → ((𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
6766reximdva 3271 . . . . . . . . . . . . . . 15 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑛𝑡 (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
68 vex 3495 . . . . . . . . . . . . . . . . . 18 𝑛 ∈ V
6968inex1 5212 . . . . . . . . . . . . . . . . 17 (𝑛𝑢) ∈ V
7069rgenw 3147 . . . . . . . . . . . . . . . 16 𝑛𝑡 (𝑛𝑢) ∈ V
71 eleq2 2898 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑛𝑢) → (𝑥𝑤𝑥 ∈ (𝑛𝑢)))
72 sseq1 3989 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑛𝑢) → (𝑤𝑧 ↔ (𝑛𝑢) ⊆ 𝑧))
7371, 72anbi12d 630 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑛𝑢) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
7429, 73rexrnmptw 6853 . . . . . . . . . . . . . . . 16 (∀𝑛𝑡 (𝑛𝑢) ∈ V → (∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧) ↔ ∃𝑛𝑡 (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧)))
7570, 74ax-mp 5 . . . . . . . . . . . . . . 15 (∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧) ↔ ∃𝑛𝑡 (𝑥 ∈ (𝑛𝑢) ∧ (𝑛𝑢) ⊆ 𝑧))
7667, 75syl6ibr 253 . . . . . . . . . . . . . 14 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗t 𝑢)) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
7776adantrr 713 . . . . . . . . . . . . 13 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
7877adantr 481 . . . . . . . . . . . 12 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → (∃𝑛𝑡 (𝑥𝑛𝑛 ⊆ (𝑧𝑢)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
7956, 78mpd 15 . . . . . . . . . . 11 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ (𝑧𝑗𝑥𝑧)) → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧))
8079expr 457 . . . . . . . . . 10 ((((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) ∧ 𝑧𝑗) → (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
8180ralrimiva 3179 . . . . . . . . 9 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
82 breq1 5060 . . . . . . . . . . 11 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → (𝑦 ≼ ω ↔ ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω))
83 rexeq 3404 . . . . . . . . . . . . 13 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))
8483imbi2d 342 . . . . . . . . . . . 12 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧))))
8584ralbidv 3194 . . . . . . . . . . 11 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → (∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧))))
8682, 85anbi12d 630 . . . . . . . . . 10 (𝑦 = ran (𝑎𝑡 ↦ (𝑎𝑢)) → ((𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))))
8786rspcev 3620 . . . . . . . . 9 ((ran (𝑎𝑡 ↦ (𝑎𝑢)) ∈ 𝒫 𝑗 ∧ (ran (𝑎𝑡 ↦ (𝑎𝑢)) ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑎𝑡 ↦ (𝑎𝑢))(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8835, 38, 81, 87syl12anc 832 . . . . . . . 8 (((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗t 𝑢)(𝑥𝑣 → ∃𝑛𝑡 (𝑥𝑛𝑛𝑣))))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
8913, 88rexlimddv 3288 . . . . . . 7 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
90893adantr1 1161 . . . . . 6 ((((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) ∧ 𝑢𝑗) ∧ (𝑢 𝑗𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω)) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
91 simpl 483 . . . . . . 7 ((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) → 𝑗 ∈ Locally 1stω)
921adantr 481 . . . . . . . 8 ((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) → 𝑗 ∈ Top)
937topopn 21442 . . . . . . . 8 (𝑗 ∈ Top → 𝑗𝑗)
9492, 93syl 17 . . . . . . 7 ((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) → 𝑗𝑗)
95 simpr 485 . . . . . . 7 ((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) → 𝑥 𝑗)
96 llyi 22010 . . . . . . 7 ((𝑗 ∈ Locally 1stω ∧ 𝑗𝑗𝑥 𝑗) → ∃𝑢𝑗 (𝑢 𝑗𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω))
9791, 94, 95, 96syl3anc 1363 . . . . . 6 ((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) → ∃𝑢𝑗 (𝑢 𝑗𝑥𝑢 ∧ (𝑗t 𝑢) ∈ 1stω))
9890, 97r19.29a 3286 . . . . 5 ((𝑗 ∈ Locally 1stω ∧ 𝑥 𝑗) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9998ralrimiva 3179 . . . 4 (𝑗 ∈ Locally 1stω → ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1007is1stc2 21978 . . . 4 (𝑗 ∈ 1stω ↔ (𝑗 ∈ Top ∧ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
1011, 99, 100sylanbrc 583 . . 3 (𝑗 ∈ Locally 1stω → 𝑗 ∈ 1stω)
102101ssriv 3968 . 2 Locally 1stω ⊆ 1stω
103 1stcrest 21989 . . . . 5 ((𝑗 ∈ 1stω ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ 1stω)
104103adantl 482 . . . 4 ((⊤ ∧ (𝑗 ∈ 1stω ∧ 𝑥𝑗)) → (𝑗t 𝑥) ∈ 1stω)
105 1stctop 21979 . . . . . 6 (𝑗 ∈ 1stω → 𝑗 ∈ Top)
106105ssriv 3968 . . . . 5 1stω ⊆ Top
107106a1i 11 . . . 4 (⊤ → 1stω ⊆ Top)
108104, 107restlly 22019 . . 3 (⊤ → 1stω ⊆ Locally 1stω)
109108mptru 1535 . 2 1stω ⊆ Locally 1stω
110102, 109eqssi 3980 1 Locally 1stω = 1stω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wtru 1529  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  cin 3932  wss 3933  𝒫 cpw 4535   cuni 4830   class class class wbr 5057  cmpt 5137  ran crn 5549  (class class class)co 7145  ωcom 7569  cdom 8495  t crest 16682  Topctop 21429  1stωc1stc 21973  Locally clly 22000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-fin 8501  df-fi 8863  df-card 9356  df-acn 9359  df-rest 16684  df-topgen 16705  df-top 21430  df-topon 21447  df-bases 21482  df-1stc 21975  df-lly 22002
This theorem is referenced by:  dis1stc  22035
  Copyright terms: Public domain W3C validator