MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llycmpkgen Structured version   Visualization version   GIF version

Theorem llycmpkgen 22154
Description: A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
llycmpkgen (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem llycmpkgen
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 𝐽 = 𝐽
2 nllytop 22075 . 2 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top)
3 simpl 485 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → 𝐽 ∈ 𝑛-Locally Comp)
41topopn 21508 . . . . . 6 (𝐽 ∈ Top → 𝐽𝐽)
52, 4syl 17 . . . . 5 (𝐽 ∈ 𝑛-Locally Comp → 𝐽𝐽)
65adantr 483 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → 𝐽𝐽)
7 simpr 487 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → 𝑥 𝐽)
8 nllyi 22077 . . . 4 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐽𝐽𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp))
93, 6, 7, 8syl3anc 1367 . . 3 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp))
10 simpr 487 . . . 4 ((𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp) → (𝐽t 𝑘) ∈ Comp)
1110reximi 3243 . . 3 (∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝑘 𝐽 ∧ (𝐽t 𝑘) ∈ Comp) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
129, 11syl 17 . 2 ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝑥 𝐽) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽t 𝑘) ∈ Comp)
131, 2, 12llycmpkgen2 22152 1 (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  wrex 3139  wss 3935  {csn 4560   cuni 4831  ran crn 5550  cfv 6349  (class class class)co 7150  t crest 16688  Topctop 21495  neicnei 21699  Compccmp 21988  𝑛-Locally cnlly 22067  𝑘Genckgen 22135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-top 21496  df-topon 21513  df-bases 21548  df-ntr 21622  df-nei 21700  df-cmp 21989  df-nlly 22069  df-kgen 22136
This theorem is referenced by:  txkgen  22254
  Copyright terms: Public domain W3C validator