MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyi Structured version   Visualization version   GIF version

Theorem llyi 22081
Description: The property of a locally 𝐴 topological space. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyi ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑃   𝑢,𝑈   𝑢,𝐽

Proof of Theorem llyi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islly 22075 . . . 4 (𝐽 ∈ Locally 𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
21simprbi 499 . . 3 (𝐽 ∈ Locally 𝐴 → ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
3 pweq 4554 . . . . . . 7 (𝑥 = 𝑈 → 𝒫 𝑥 = 𝒫 𝑈)
43ineq2d 4188 . . . . . 6 (𝑥 = 𝑈 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑈))
54rexeqdv 3416 . . . . 5 (𝑥 = 𝑈 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
65raleqbi1dv 3403 . . . 4 (𝑥 = 𝑈 → (∀𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
76rspccva 3621 . . 3 ((∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
82, 7sylan 582 . 2 ((𝐽 ∈ Locally 𝐴𝑈𝐽) → ∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
9 eleq1 2900 . . . . . . 7 (𝑦 = 𝑃 → (𝑦𝑢𝑃𝑢))
109anbi1d 631 . . . . . 6 (𝑦 = 𝑃 → ((𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1110anbi2d 630 . . . . 5 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
12 anass 471 . . . . . 6 (((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
13 elin 4168 . . . . . . . 8 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢 ∈ 𝒫 𝑈))
14 velpw 4543 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑈𝑢𝑈)
1514anbi2i 624 . . . . . . . 8 ((𝑢𝐽𝑢 ∈ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1613, 15bitri 277 . . . . . . 7 (𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ↔ (𝑢𝐽𝑢𝑈))
1716anbi1i 625 . . . . . 6 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ ((𝑢𝐽𝑢𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
18 3anass 1091 . . . . . . 7 ((𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
1918anbi2i 624 . . . . . 6 ((𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈 ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2012, 17, 193bitr4i 305 . . . . 5 ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2111, 20syl6bb 289 . . . 4 (𝑦 = 𝑃 → ((𝑢 ∈ (𝐽 ∩ 𝒫 𝑈) ∧ (𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)) ↔ (𝑢𝐽 ∧ (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))))
2221rexbidv2 3295 . . 3 (𝑦 = 𝑃 → (∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ↔ ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴)))
2322rspccva 3621 . 2 ((∀𝑦𝑈𝑢 ∈ (𝐽 ∩ 𝒫 𝑈)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴) ∧ 𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
248, 23stoic3 1773 1 ((𝐽 ∈ Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑢𝐽 (𝑢𝑈𝑃𝑢 ∧ (𝐽t 𝑢) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cin 3934  wss 3935  𝒫 cpw 4538  (class class class)co 7155  t crest 16693  Topctop 21500  Locally clly 22071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362  df-ov 7158  df-lly 22073
This theorem is referenced by:  llynlly  22084  islly2  22091  llyrest  22092  llyidm  22095  nllyidm  22096  lly1stc  22103  dislly  22104  txlly  22243  cvmlift2lem10  32559
  Copyright terms: Public domain W3C validator