MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbr Structured version   Visualization version   GIF version

Theorem lmbr 20972
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 20943. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
lmbr (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
Distinct variable groups:   𝑦,𝑢,𝐹   𝑢,𝐽,𝑦   𝜑,𝑢   𝑢,𝑃   𝑢,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)

Proof of Theorem lmbr
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 lmfval 20946 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
31, 2syl 17 . . 3 (𝜑 → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
43breqd 4624 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹{⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}𝑃))
5 reseq1 5350 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
65feq1d 5987 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑦):𝑦𝑢 ↔ (𝐹𝑦):𝑦𝑢))
76rexbidv 3045 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢 ↔ ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
87imbi2d 330 . . . . . 6 (𝑓 = 𝐹 → ((𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
98ralbidv 2980 . . . . 5 (𝑓 = 𝐹 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
10 eleq1 2686 . . . . . . 7 (𝑥 = 𝑃 → (𝑥𝑢𝑃𝑢))
1110imbi1d 331 . . . . . 6 (𝑥 = 𝑃 → ((𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
1211ralbidv 2980 . . . . 5 (𝑥 = 𝑃 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
139, 12sylan9bb 735 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑃) → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
14 df-3an 1038 . . . . 5 ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) ↔ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
1514opabbii 4679 . . . 4 {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋) ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}
1613, 15brab2ga 5155 . . 3 (𝐹{⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}𝑃 ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
17 df-3an 1038 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
1816, 17bitr4i 267 . 2 (𝐹{⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))}𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
194, 18syl6bb 276 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4613  {copab 4672  ran crn 5075  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  pm cpm 7803  cc 9878  cuz 11631  TopOnctopon 20618  𝑡clm 20940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-top 20621  df-topon 20623  df-lm 20943
This theorem is referenced by:  lmbr2  20973  lmfpm  21009  lmcl  21011  lmff  21015  lmmbr  22964
  Copyright terms: Public domain W3C validator