Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmbr3 Structured version   Visualization version   GIF version

Theorem lmbr3 40474
 Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
lmbr3.1 𝑘𝐹
lmbr3.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
lmbr3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑢,𝑃   𝑗,𝑘,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑋(𝑢,𝑗,𝑘)

Proof of Theorem lmbr3
Dummy variables 𝑖 𝑙 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr3.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr3v 40472 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)))))
3 eleq2w 2815 . . . . 5 (𝑣 = 𝑢 → (𝑃𝑣𝑃𝑢))
4 eleq2w 2815 . . . . . . . 8 (𝑣 = 𝑢 → ((𝐹𝑙) ∈ 𝑣 ↔ (𝐹𝑙) ∈ 𝑢))
54anbi2d 742 . . . . . . 7 (𝑣 = 𝑢 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ (𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
65rexralbidv 3188 . . . . . 6 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
7 fveq2 6344 . . . . . . . . 9 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3275 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
9 nfcv 2894 . . . . . . . . . . 11 𝑘𝑙
10 lmbr3.1 . . . . . . . . . . . 12 𝑘𝐹
1110nfdm 5514 . . . . . . . . . . 11 𝑘dom 𝐹
129, 11nfel 2907 . . . . . . . . . 10 𝑘 𝑙 ∈ dom 𝐹
1310, 9nffv 6351 . . . . . . . . . . 11 𝑘(𝐹𝑙)
14 nfcv 2894 . . . . . . . . . . 11 𝑘𝑢
1513, 14nfel 2907 . . . . . . . . . 10 𝑘(𝐹𝑙) ∈ 𝑢
1612, 15nfan 1969 . . . . . . . . 9 𝑘(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)
17 nfv 1984 . . . . . . . . 9 𝑙(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)
18 eleq1w 2814 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
19 fveq2 6344 . . . . . . . . . . 11 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2019eleq1d 2816 . . . . . . . . . 10 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2118, 20anbi12d 749 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2216, 17, 21cbvral 3298 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
238, 22syl6bb 276 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2423cbvrexv 3303 . . . . . 6 (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
256, 24syl6bb 276 . . . . 5 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
263, 25imbi12d 333 . . . 4 (𝑣 = 𝑢 → ((𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2726cbvralv 3302 . . 3 (∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
28273anbi3i 1162 . 2 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
292, 28syl6bb 276 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   ∈ wcel 2131  Ⅎwnfc 2881  ∀wral 3042  ∃wrex 3043   class class class wbr 4796  dom cdm 5258  ‘cfv 6041  (class class class)co 6805   ↑pm cpm 8016  ℂcc 10118  ℤcz 11561  ℤ≥cuz 11871  TopOnctopon 20909  ⇝𝑡clm 21224 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-i2m1 10188  ax-1ne0 10189  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-po 5179  df-so 5180  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-er 7903  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-neg 10453  df-z 11562  df-uz 11872  df-top 20893  df-topon 20910  df-lm 21227 This theorem is referenced by:  xlimbr  40548  xlimmnfvlem1  40553  xlimmnfvlem2  40554  xlimpnfvlem1  40557  xlimpnfvlem2  40558
 Copyright terms: Public domain W3C validator