Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Visualization version   GIF version

Theorem lmclim2 33786
Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
lmclim2.4 𝐽 = (MetOpen‘𝐷)
lmclim2.5 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
lmclim2.6 (𝜑𝑌𝑋)
Assertion
Ref Expression
lmclim2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌

Proof of Theorem lmclim2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmclim2.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 22261 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 nnuz 11837 . . 3 ℕ = (ℤ‘1)
6 1zzd 11521 . . 3 (𝜑 → 1 ∈ ℤ)
7 eqidd 2725 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8 lmclim2.3 . . 3 (𝜑𝐹:ℕ⟶𝑋)
91, 4, 5, 6, 7, 8lmmbrf 23181 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
10 lmclim2.5 . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
11 nnex 11139 . . . . . . 7 ℕ ∈ V
1211mptex 6602 . . . . . 6 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌)) ∈ V
1310, 12eqeltri 2799 . . . . 5 𝐺 ∈ V
1413a1i 11 . . . 4 (𝜑𝐺 ∈ V)
15 fveq2 6304 . . . . . . 7 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615oveq1d 6780 . . . . . 6 (𝑥 = 𝑘 → ((𝐹𝑥)𝐷𝑌) = ((𝐹𝑘)𝐷𝑌))
17 ovex 6793 . . . . . 6 ((𝐹𝑘)𝐷𝑌) ∈ V
1816, 10, 17fvmpt 6396 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
1918adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
202adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
218ffvelrnda 6474 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
22 lmclim2.6 . . . . . . 7 (𝜑𝑌𝑋)
2322adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑌𝑋)
24 metcl 22259 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2520, 21, 23, 24syl3anc 1439 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2625recnd 10181 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℂ)
275, 6, 14, 19, 26clim0c 14358 . . 3 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥))
28 eluznn 11872 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
29 metge0 22272 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3020, 21, 23, 29syl3anc 1439 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3125, 30absidd 14281 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝐹𝑘)𝐷𝑌)) = ((𝐹𝑘)𝐷𝑌))
3231breq1d 4770 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3328, 32sylan2 492 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3433anassrs 683 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3534ralbidva 3087 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3635rexbidva 3151 . . . 4 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3736ralbidv 3088 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3822biantrurd 530 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
3927, 37, 383bitrrd 295 . 2 (𝜑 → ((𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0))
409, 39bitrd 268 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wral 3014  wrex 3015  Vcvv 3304   class class class wbr 4760  cmpt 4837  wf 5997  cfv 6001  (class class class)co 6765  cr 10048  0cc0 10049  1c1 10050   < clt 10187  cle 10188  cn 11133  cuz 11800  +crp 11946  abscabs 14094  cli 14335  ∞Metcxmt 19854  Metcme 19855  MetOpencmopn 19859  𝑡clm 21153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-top 20822  df-topon 20839  df-bases 20873  df-lm 21156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator