Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmclim2 Structured version   Visualization version   GIF version

Theorem lmclim2 33786
 Description: A sequence in a metric space converges to a point iff the distance between the point and the elements of the sequence converges to 0. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
lmclim2.4 𝐽 = (MetOpen‘𝐷)
lmclim2.5 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
lmclim2.6 (𝜑𝑌𝑋)
Assertion
Ref Expression
lmclim2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌

Proof of Theorem lmclim2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmclim2.4 . . 3 𝐽 = (MetOpen‘𝐷)
2 lmclim2.2 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
3 metxmet 22261 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 nnuz 11837 . . 3 ℕ = (ℤ‘1)
6 1zzd 11521 . . 3 (𝜑 → 1 ∈ ℤ)
7 eqidd 2725 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
8 lmclim2.3 . . 3 (𝜑𝐹:ℕ⟶𝑋)
91, 4, 5, 6, 7, 8lmmbrf 23181 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
10 lmclim2.5 . . . . . 6 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌))
11 nnex 11139 . . . . . . 7 ℕ ∈ V
1211mptex 6602 . . . . . 6 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)𝐷𝑌)) ∈ V
1310, 12eqeltri 2799 . . . . 5 𝐺 ∈ V
1413a1i 11 . . . 4 (𝜑𝐺 ∈ V)
15 fveq2 6304 . . . . . . 7 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
1615oveq1d 6780 . . . . . 6 (𝑥 = 𝑘 → ((𝐹𝑥)𝐷𝑌) = ((𝐹𝑘)𝐷𝑌))
17 ovex 6793 . . . . . 6 ((𝐹𝑘)𝐷𝑌) ∈ V
1816, 10, 17fvmpt 6396 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
1918adantl 473 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = ((𝐹𝑘)𝐷𝑌))
202adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
218ffvelrnda 6474 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
22 lmclim2.6 . . . . . . 7 (𝜑𝑌𝑋)
2322adantr 472 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑌𝑋)
24 metcl 22259 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2520, 21, 23, 24syl3anc 1439 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℝ)
2625recnd 10181 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷𝑌) ∈ ℂ)
275, 6, 14, 19, 26clim0c 14358 . . 3 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥))
28 eluznn 11872 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
29 metge0 22272 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋𝑌𝑋) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3020, 21, 23, 29syl3anc 1439 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷𝑌))
3125, 30absidd 14281 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝐹𝑘)𝐷𝑌)) = ((𝐹𝑘)𝐷𝑌))
3231breq1d 4770 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3328, 32sylan2 492 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3433anassrs 683 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑌) < 𝑥))
3534ralbidva 3087 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3635rexbidva 3151 . . . 4 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3736ralbidv 3088 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘)𝐷𝑌)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥))
3822biantrurd 530 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥 ↔ (𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥)))
3927, 37, 383bitrrd 295 . 2 (𝜑 → ((𝑌𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘)𝐷𝑌) < 𝑥) ↔ 𝐺 ⇝ 0))
409, 39bitrd 268 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑌𝐺 ⇝ 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1596   ∈ wcel 2103  ∀wral 3014  ∃wrex 3015  Vcvv 3304   class class class wbr 4760   ↦ cmpt 4837  ⟶wf 5997  ‘cfv 6001  (class class class)co 6765  ℝcr 10048  0cc0 10049  1c1 10050   < clt 10187   ≤ cle 10188  ℕcn 11133  ℤ≥cuz 11800  ℝ+crp 11946  abscabs 14094   ⇝ cli 14335  ∞Metcxmt 19854  Metcme 19855  MetOpencmopn 19859  ⇝𝑡clm 21153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-top 20822  df-topon 20839  df-bases 20873  df-lm 21156 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator