Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmclimf Structured version   Visualization version   GIF version

Theorem lmclimf 23148
 Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmclim.2 𝐽 = (TopOpen‘ℂfld)
lmclim.3 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
lmclimf ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))

Proof of Theorem lmclimf
StepHypRef Expression
1 simpr 476 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝐹:𝑍⟶ℂ)
2 fdm 6089 . . . 4 (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍)
3 eqimss2 3691 . . . 4 (dom 𝐹 = 𝑍𝑍 ⊆ dom 𝐹)
41, 2, 33syl 18 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝑍 ⊆ dom 𝐹)
5 lmclim.2 . . . 4 𝐽 = (TopOpen‘ℂfld)
6 lmclim.3 . . . 4 𝑍 = (ℤ𝑀)
75, 6lmclim 23147 . . 3 ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹𝑃)))
84, 7syldan 486 . 2 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹𝑃)))
9 uzssz 11745 . . . . . 6 (ℤ𝑀) ⊆ ℤ
10 zsscn 11423 . . . . . 6 ℤ ⊆ ℂ
119, 10sstri 3645 . . . . 5 (ℤ𝑀) ⊆ ℂ
126, 11eqsstri 3668 . . . 4 𝑍 ⊆ ℂ
13 cnex 10055 . . . . 5 ℂ ∈ V
14 elpm2r 7917 . . . . 5 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℂ ∧ 𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
1513, 13, 14mpanl12 718 . . . 4 ((𝐹:𝑍⟶ℂ ∧ 𝑍 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
161, 12, 15sylancl 695 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
1716biantrurd 528 . 2 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹𝑃)))
188, 17bitr4d 271 1 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ⊆ wss 3607   class class class wbr 4685  dom cdm 5143  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑pm cpm 7900  ℂcc 9972  ℤcz 11415  ℤ≥cuz 11725   ⇝ cli 14259  TopOpenctopn 16129  ℂfldccnfld 19794  ⇝𝑡clm 21078 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-bases 20798  df-lm 21081 This theorem is referenced by:  lmlim  30121  climreeq  40163
 Copyright terms: Public domain W3C validator