Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcls Structured version   Visualization version   GIF version

Theorem lmcls 21016
 Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcls.8 (𝜑𝑆𝑋)
Assertion
Ref Expression
lmcls (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcls
Dummy variables 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcls.5 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.1 . . . . . 6 𝑍 = (ℤ𝑀)
4 lmff.4 . . . . . 6 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmbr2 20973 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
61, 5mpbid 222 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
76simp3d 1073 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
83r19.2uz 14025 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
9 lmcls.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
10 inelcm 4004 . . . . . . . . . 10 (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅)
1110a1i 11 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅))
129, 11mpan2d 709 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 → (𝑢𝑆) ≠ ∅))
1312adantld 483 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1413rexlimdva 3024 . . . . . 6 (𝜑 → (∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
158, 14syl5 34 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1615imim2d 57 . . . 4 (𝜑 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
1716ralimdv 2957 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
187, 17mpd 15 . 2 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅))
19 topontop 20641 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
202, 19syl 17 . . 3 (𝜑𝐽 ∈ Top)
21 lmcls.8 . . . 4 (𝜑𝑆𝑋)
22 toponuni 20642 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
232, 22syl 17 . . . 4 (𝜑𝑋 = 𝐽)
2421, 23sseqtrd 3620 . . 3 (𝜑𝑆 𝐽)
25 lmcl 21011 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
262, 1, 25syl2anc 692 . . . 4 (𝜑𝑃𝑋)
2726, 23eleqtrd 2700 . . 3 (𝜑𝑃 𝐽)
28 eqid 2621 . . . 4 𝐽 = 𝐽
2928elcls 20787 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3020, 24, 27, 29syl3anc 1323 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3118, 30mpbird 247 1 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908   ∩ cin 3554   ⊆ wss 3555  ∅c0 3891  ∪ cuni 4402   class class class wbr 4613  dom cdm 5074  ‘cfv 5847  (class class class)co 6604   ↑pm cpm 7803  ℂcc 9878  ℤcz 11321  ℤ≥cuz 11631  Topctop 20617  TopOnctopon 20618  clsccl 20732  ⇝𝑡clm 20940 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-neg 10213  df-z 11322  df-uz 11632  df-top 20621  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-lm 20943 This theorem is referenced by:  lmcld  21017  1stcelcls  21174  caublcls  23015
 Copyright terms: Public domain W3C validator