MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcls Structured version   Visualization version   GIF version

Theorem lmcls 21016
Description: Any convergent sequence of points in a subset of a topological space converges to a point in the closure of the subset. (Contributed by Mario Carneiro, 30-Dec-2013.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmff.1 𝑍 = (ℤ𝑀)
lmff.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmff.4 (𝜑𝑀 ∈ ℤ)
lmcls.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcls.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
lmcls.8 (𝜑𝑆𝑋)
Assertion
Ref Expression
lmcls (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐽   𝑘,𝑀   𝑃,𝑘   𝑆,𝑘   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍

Proof of Theorem lmcls
Dummy variables 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcls.5 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmff.3 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 lmff.1 . . . . . 6 𝑍 = (ℤ𝑀)
4 lmff.4 . . . . . 6 (𝜑𝑀 ∈ ℤ)
52, 3, 4lmbr2 20973 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
61, 5mpbid 222 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
76simp3d 1073 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
83r19.2uz 14025 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
9 lmcls.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑆)
10 inelcm 4004 . . . . . . . . . 10 (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅)
1110a1i 11 . . . . . . . . 9 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑆) → (𝑢𝑆) ≠ ∅))
129, 11mpan2d 709 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 → (𝑢𝑆) ≠ ∅))
1312adantld 483 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1413rexlimdva 3024 . . . . . 6 (𝜑 → (∃𝑘𝑍 (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
158, 14syl5 34 . . . . 5 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝑢𝑆) ≠ ∅))
1615imim2d 57 . . . 4 (𝜑 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
1716ralimdv 2957 . . 3 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
187, 17mpd 15 . 2 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅))
19 topontop 20641 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
202, 19syl 17 . . 3 (𝜑𝐽 ∈ Top)
21 lmcls.8 . . . 4 (𝜑𝑆𝑋)
22 toponuni 20642 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
232, 22syl 17 . . . 4 (𝜑𝑋 = 𝐽)
2421, 23sseqtrd 3620 . . 3 (𝜑𝑆 𝐽)
25 lmcl 21011 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃𝑋)
262, 1, 25syl2anc 692 . . . 4 (𝜑𝑃𝑋)
2726, 23eleqtrd 2700 . . 3 (𝜑𝑃 𝐽)
28 eqid 2621 . . . 4 𝐽 = 𝐽
2928elcls 20787 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3020, 24, 27, 29syl3anc 1323 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑢𝐽 (𝑃𝑢 → (𝑢𝑆) ≠ ∅)))
3118, 30mpbird 247 1 (𝜑𝑃 ∈ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  cin 3554  wss 3555  c0 3891   cuni 4402   class class class wbr 4613  dom cdm 5074  cfv 5847  (class class class)co 6604  pm cpm 7803  cc 9878  cz 11321  cuz 11631  Topctop 20617  TopOnctopon 20618  clsccl 20732  𝑡clm 20940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-neg 10213  df-z 11322  df-uz 11632  df-top 20621  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-lm 20943
This theorem is referenced by:  lmcld  21017  1stcelcls  21174  caublcls  23015
  Copyright terms: Public domain W3C validator