MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcnp Structured version   Visualization version   GIF version

Theorem lmcnp 21911
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcnp.4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
Assertion
Ref Expression
lmcnp (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))

Proof of Theorem lmcnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.4 . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
2 eqid 2821 . . . . . . 7 𝐽 = 𝐽
3 eqid 2821 . . . . . . 7 𝐾 = 𝐾
42, 3cnpf 21854 . . . . . 6 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐺: 𝐽 𝐾)
51, 4syl 17 . . . . 5 (𝜑𝐺: 𝐽 𝐾)
6 lmcnp.3 . . . . . . . . 9 (𝜑𝐹(⇝𝑡𝐽)𝑃)
7 cnptop1 21849 . . . . . . . . . . . 12 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
81, 7syl 17 . . . . . . . . . . 11 (𝜑𝐽 ∈ Top)
9 toptopon2 21525 . . . . . . . . . . 11 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 220 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
11 nnuz 12280 . . . . . . . . . 10 ℕ = (ℤ‘1)
12 1zzd 12012 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
1310, 11, 12lmbr2 21866 . . . . . . . . 9 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))))
146, 13mpbid 234 . . . . . . . 8 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣))))
1514simp1d 1138 . . . . . . 7 (𝜑𝐹 ∈ ( 𝐽pm ℂ))
168uniexd 7467 . . . . . . . 8 (𝜑 𝐽 ∈ V)
17 cnex 10617 . . . . . . . 8 ℂ ∈ V
18 elpm2g 8422 . . . . . . . 8 (( 𝐽 ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
1916, 17, 18sylancl 588 . . . . . . 7 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2015, 19mpbid 234 . . . . . 6 (𝜑 → (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ))
2120simpld 497 . . . . 5 (𝜑𝐹:dom 𝐹 𝐽)
22 fco 6530 . . . . 5 ((𝐺: 𝐽 𝐾𝐹:dom 𝐹 𝐽) → (𝐺𝐹):dom 𝐹 𝐾)
235, 21, 22syl2anc 586 . . . 4 (𝜑 → (𝐺𝐹):dom 𝐹 𝐾)
2423ffdmd 6536 . . 3 (𝜑 → (𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾)
2523fdmd 6522 . . . 4 (𝜑 → dom (𝐺𝐹) = dom 𝐹)
2620simprd 498 . . . 4 (𝜑 → dom 𝐹 ⊆ ℂ)
2725, 26eqsstrd 4004 . . 3 (𝜑 → dom (𝐺𝐹) ⊆ ℂ)
28 cnptop2 21850 . . . . . 6 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐾 ∈ Top)
291, 28syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
3029uniexd 7467 . . . 4 (𝜑 𝐾 ∈ V)
31 elpm2g 8422 . . . 4 (( 𝐾 ∈ V ∧ ℂ ∈ V) → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3230, 17, 31sylancl 588 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3324, 27, 32mpbir2and 711 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝐾pm ℂ))
3414simp2d 1139 . . 3 (𝜑𝑃 𝐽)
355, 34ffvelrnd 6851 . 2 (𝜑 → (𝐺𝑃) ∈ 𝐾)
3614simp3d 1140 . . . . . 6 (𝜑 → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
3736adantr 483 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
38 cnpimaex 21863 . . . . . . 7 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
39383expb 1116 . . . . . 6 ((𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
401, 39sylan 582 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
41 r19.29 3254 . . . . . . 7 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
42 pm3.45 623 . . . . . . . . 9 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) → ((𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢)))
4342imp 409 . . . . . . . 8 (((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
4443reximi 3243 . . . . . . 7 (∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
4541, 44syl 17 . . . . . 6 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
465ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺: 𝐽 𝐾)
4746ffnd 6514 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn 𝐽)
48 simplrl 775 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣𝐽)
49 elssuni 4867 . . . . . . . . . . . . . . . . 17 (𝑣𝐽𝑣 𝐽)
5048, 49syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 𝐽)
51 fnfvima 6994 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐽𝑣 𝐽 ∧ (𝐹𝑘) ∈ 𝑣) → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣))
52513expia 1117 . . . . . . . . . . . . . . . 16 ((𝐺 Fn 𝐽𝑣 𝐽) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
5347, 50, 52syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
5421ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹 𝐽)
55 fvco3 6759 . . . . . . . . . . . . . . . . 17 ((𝐹:dom 𝐹 𝐽𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
5654, 55sylan 582 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
5756eleq1d 2897 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) ↔ (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
5853, 57sylibrd 261 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣)))
59 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑣) ⊆ 𝑢)
6059sseld 3965 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
6158, 60syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
62 simpr 487 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹)
6325ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺𝐹) = dom 𝐹)
6462, 63eleqtrrd 2916 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺𝐹))
6561, 64jctild 528 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6665expimpd 456 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6766ralimdv 3178 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6867reximdv 3273 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
6968expr 459 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐺𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7069impcomd 414 . . . . . . 7 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7170rexlimdva 3284 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7245, 71syl5 34 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7337, 40, 72mp2and 697 . . . 4 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))
7473expr 459 . . 3 ((𝜑𝑢𝐾) → ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7574ralrimiva 3182 . 2 (𝜑 → ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
76 toptopon2 21525 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
7729, 76sylib 220 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
7877, 11, 12lmbr2 21866 . 2 (𝜑 → ((𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃) ↔ ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ∧ (𝐺𝑃) ∈ 𝐾 ∧ ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))))
7933, 35, 75, 78mpbir3and 1338 1 (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935   cuni 4837   class class class wbr 5065  dom cdm 5554  cima 5557  ccom 5558   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  pm cpm 8406  cc 10534  1c1 10537  cn 11637  cuz 12242  Topctop 21500  TopOnctopon 21517   CnP ccnp 21832  𝑡clm 21833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-z 11981  df-uz 12243  df-top 21501  df-topon 21518  df-cnp 21835  df-lm 21836
This theorem is referenced by:  lmcn  21912  1stccnp  22069
  Copyright terms: Public domain W3C validator