Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcvg Structured version   Visualization version   GIF version

Theorem lmcvg 21288
 Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1 𝑍 = (ℤ𝑀)
lmcvg.3 (𝜑𝑃𝑈)
lmcvg.4 (𝜑𝑀 ∈ ℤ)
lmcvg.5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcvg.6 (𝜑𝑈𝐽)
Assertion
Ref Expression
lmcvg (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
Distinct variable groups:   𝑗,𝑘,𝐹   𝑗,𝐽,𝑘   𝑃,𝑗,𝑘   𝜑,𝑗,𝑘   𝑈,𝑗,𝑘   𝑗,𝑀   𝑗,𝑍,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmcvg
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lmcvg.3 . 2 (𝜑𝑃𝑈)
2 eleq2 2828 . . . 4 (𝑢 = 𝑈 → (𝑃𝑢𝑃𝑈))
3 eleq2 2828 . . . . 5 (𝑢 = 𝑈 → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑈))
43rexralbidv 3196 . . . 4 (𝑢 = 𝑈 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈))
52, 4imbi12d 333 . . 3 (𝑢 = 𝑈 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃𝑈 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)))
6 lmcvg.5 . . . . . 6 (𝜑𝐹(⇝𝑡𝐽)𝑃)
7 lmrcl 21257 . . . . . . . . 9 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
86, 7syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
9 eqid 2760 . . . . . . . . 9 𝐽 = 𝐽
109toptopon 20944 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
118, 10sylib 208 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
12 lmcvg.1 . . . . . . 7 𝑍 = (ℤ𝑀)
13 lmcvg.4 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1411, 12, 13lmbr2 21285 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
156, 14mpbid 222 . . . . 5 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1615simp3d 1139 . . . 4 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
17 simpr 479 . . . . . . . 8 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → (𝐹𝑘) ∈ 𝑢)
1817ralimi 3090 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)
1918reximi 3149 . . . . . 6 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)
2019imim2i 16 . . . . 5 ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
2120ralimi 3090 . . . 4 (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
2216, 21syl 17 . . 3 (𝜑 → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
23 lmcvg.6 . . 3 (𝜑𝑈𝐽)
245, 22, 23rspcdva 3455 . 2 (𝜑 → (𝑃𝑈 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈))
251, 24mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  ∪ cuni 4588   class class class wbr 4804  dom cdm 5266  ‘cfv 6049  (class class class)co 6814   ↑pm cpm 8026  ℂcc 10146  ℤcz 11589  ℤ≥cuz 11899  Topctop 20920  TopOnctopon 20937  ⇝𝑡clm 21252 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-neg 10481  df-z 11590  df-uz 11900  df-top 20921  df-topon 20938  df-lm 21255 This theorem is referenced by:  lmmo  21406  1stccnp  21487  1stckgenlem  21578  iscmet3lem2  23310
 Copyright terms: Public domain W3C validator