MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmeql Structured version   Visualization version   GIF version

Theorem lmhmeql 19821
Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
lmhmeql.u 𝑈 = (LSubSp‘𝑆)
Assertion
Ref Expression
lmhmeql ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ 𝑈)

Proof of Theorem lmhmeql
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 19797 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmghm 19797 . . 3 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
3 ghmeql 18375 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
41, 2, 3syl2an 597 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
5 fveq2 6664 . . . . . . . 8 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → (𝐹𝑧) = (𝐹‘(𝑥( ·𝑠𝑆)𝑦)))
6 fveq2 6664 . . . . . . . 8 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → (𝐺𝑧) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦)))
75, 6eqeq12d 2837 . . . . . . 7 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦))))
8 lmhmlmod1 19799 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
98adantr 483 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
109ad2antrr 724 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑆 ∈ LMod)
11 simplr 767 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑥 ∈ (Base‘(Scalar‘𝑆)))
12 simprl 769 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑦 ∈ (Base‘𝑆))
13 eqid 2821 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
14 eqid 2821 . . . . . . . . 9 (Scalar‘𝑆) = (Scalar‘𝑆)
15 eqid 2821 . . . . . . . . 9 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2821 . . . . . . . . 9 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
1713, 14, 15, 16lmodvscl 19645 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
1810, 11, 12, 17syl3anc 1367 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
19 oveq2 7158 . . . . . . . . 9 ((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2019ad2antll 727 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
21 simplll 773 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
22 eqid 2821 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
2314, 16, 13, 15, 22lmhmlin 19801 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
2421, 11, 12, 23syl3anc 1367 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
25 simpllr 774 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
2614, 16, 13, 15, 22lmhmlin 19801 . . . . . . . . 9 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2725, 11, 12, 26syl3anc 1367 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2820, 24, 273eqtr4d 2866 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦)))
297, 18, 28elrabd 3681 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3029expr 459 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
3130ralrimiva 3182 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
32 eqid 2821 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
3313, 32lmhmf 19800 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3433ffnd 6509 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn (Base‘𝑆))
3513, 32lmhmf 19800 . . . . . . . 8 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3635ffnd 6509 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 Fn (Base‘𝑆))
37 fndmin 6809 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3834, 36, 37syl2an 597 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3938adantr 483 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
40 eleq2 2901 . . . . . . 7 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → ((𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4140raleqbi1dv 3403 . . . . . 6 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
42 fveq2 6664 . . . . . . . 8 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
43 fveq2 6664 . . . . . . . 8 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
4442, 43eqeq12d 2837 . . . . . . 7 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑦) = (𝐺𝑦)))
4544ralrab 3684 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4641, 45syl6bb 289 . . . . 5 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
4739, 46syl 17 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
4831, 47mpbird 259 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))
4948ralrimiva 3182 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))
50 lmhmeql.u . . . 4 𝑈 = (LSubSp‘𝑆)
5114, 16, 13, 15, 50islss4 19728 . . 3 (𝑆 ∈ LMod → (dom (𝐹𝐺) ∈ 𝑈 ↔ (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))))
529, 51syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (dom (𝐹𝐺) ∈ 𝑈 ↔ (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))))
534, 49, 52mpbir2and 711 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  cin 3934  dom cdm 5549   Fn wfn 6344  cfv 6349  (class class class)co 7150  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563  SubGrpcsubg 18267   GrpHom cghm 18349  LModclmod 19628  LSubSpclss 19697   LMHom clmhm 19785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-ghm 18350  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lmhm 19788
This theorem is referenced by:  lspextmo  19822
  Copyright terms: Public domain W3C validator