![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmlem | Structured version Visualization version GIF version |
Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlem.k | ⊢ 𝐾 = (Scalar‘𝑆) |
lmhmlem.l | ⊢ 𝐿 = (Scalar‘𝑇) |
Ref | Expression |
---|---|
lmhmlem | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlem.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | lmhmlem.l | . . 3 ⊢ 𝐿 = (Scalar‘𝑇) | |
3 | eqid 2651 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | eqid 2651 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
5 | eqid 2651 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
6 | eqid 2651 | . . 3 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 19075 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))))) |
8 | 3simpa 1078 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏))) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)) | |
9 | 8 | anim2i 592 | . 2 ⊢ (((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾 ∧ ∀𝑎 ∈ (Base‘𝐾)∀𝑏 ∈ (Base‘𝑆)(𝐹‘(𝑎( ·𝑠 ‘𝑆)𝑏)) = (𝑎( ·𝑠 ‘𝑇)(𝐹‘𝑏)))) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
10 | 7, 9 | sylbi 207 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Scalarcsca 15991 ·𝑠 cvsca 15992 GrpHom cghm 17704 LModclmod 18911 LMHom clmhm 19067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-lmhm 19070 |
This theorem is referenced by: lmhmsca 19078 lmghm 19079 lmhmlmod2 19080 lmhmlmod1 19081 |
Copyright terms: Public domain | W3C validator |