MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlmod1 Structured version   Visualization version   GIF version

Theorem lmhmlmod1 18952
Description: A homomorphism of left modules has a left module as domain. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Assertion
Ref Expression
lmhmlmod1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)

Proof of Theorem lmhmlmod1
StepHypRef Expression
1 eqid 2621 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
2 eqid 2621 . . 3 (Scalar‘𝑇) = (Scalar‘𝑇)
31, 2lmhmlem 18948 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑆))))
43simplld 790 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5847  (class class class)co 6604  Scalarcsca 15865   GrpHom cghm 17578  LModclmod 18784   LMHom clmhm 18938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-lmhm 18941
This theorem is referenced by:  islmhm2  18957  lmhmco  18962  lmhmplusg  18963  lmhmvsca  18964  lmhmf1o  18965  lmhmima  18966  lmhmpreima  18967  lmhmlsp  18968  lmhmrnlss  18969  reslmhm  18971  reslmhm2  18972  reslmhm2b  18973  lmhmeql  18974  lspextmo  18975  islmim  18981  lmiclcl  18989  lindfmm  20085  lindsmm  20086  lmhmclm  22795  kercvrlsm  37133  lmhmfgima  37134  lmhmfgsplit  37136  lmhmlnmsplit  37137
  Copyright terms: Public domain W3C validator