MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmsca Structured version   Visualization version   GIF version

Theorem lmhmsca 18944
Description: A homomorphism of left modules constrains both modules to the same ring of scalars. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlem.k 𝐾 = (Scalar‘𝑆)
lmhmlem.l 𝐿 = (Scalar‘𝑇)
Assertion
Ref Expression
lmhmsca (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾)

Proof of Theorem lmhmsca
StepHypRef Expression
1 lmhmlem.k . . 3 𝐾 = (Scalar‘𝑆)
2 lmhmlem.l . . 3 𝐿 = (Scalar‘𝑇)
31, 2lmhmlem 18943 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐿 = 𝐾)))
43simprrd 796 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐿 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  cfv 5850  (class class class)co 6605  Scalarcsca 15860   GrpHom cghm 17573  LModclmod 18779   LMHom clmhm 18933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5813  df-fun 5852  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-lmhm 18936
This theorem is referenced by:  islmhm2  18952  lmhmco  18957  lmhmplusg  18958  lmhmvsca  18959  lmhmf1o  18960  lmhmima  18961  lmhmpreima  18962  reslmhm  18966  reslmhm2  18967  reslmhm2b  18968  lindfmm  20080  lmhmclm  22790  nmoleub2lem3  22818  nmoleub3  22822
  Copyright terms: Public domain W3C validator