MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmicsym Structured version   Visualization version   GIF version

Theorem lmicsym 18991
Description: Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
lmicsym (𝑅𝑚 𝑆𝑆𝑚 𝑅)

Proof of Theorem lmicsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brlmic 18987 . 2 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 3907 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
3 lmimcnv 18986 . . . . 5 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑆 LMIso 𝑅))
4 brlmici 18988 . . . . 5 (𝑓 ∈ (𝑆 LMIso 𝑅) → 𝑆𝑚 𝑅)
53, 4syl 17 . . . 4 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆𝑚 𝑅)
65exlimiv 1855 . . 3 (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆𝑚 𝑅)
72, 6sylbi 207 . 2 ((𝑅 LMIso 𝑆) ≠ ∅ → 𝑆𝑚 𝑅)
81, 7sylbi 207 1 (𝑅𝑚 𝑆𝑆𝑚 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1701  wcel 1987  wne 2790  c0 3891   class class class wbr 4613  ccnv 5073  (class class class)co 6604   LMIso clmim 18939  𝑚 clmic 18940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-1o 7505  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-ghm 17579  df-lmod 18786  df-lmhm 18941  df-lmim 18942  df-lmic 18943
This theorem is referenced by:  lmisfree  20100
  Copyright terms: Public domain W3C validator