MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiisolem Structured version   Visualization version   GIF version

Theorem lmiisolem 25588
Description: Lemma for lmiiso 25589. (Contributed by Thierry Arnoux, 14-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmiiso.1 (𝜑𝐴𝑃)
lmiiso.2 (𝜑𝐵𝑃)
lmiisolem.s 𝑆 = ((pInvG‘𝐺)‘𝑍)
lmiisolem.z 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))
Assertion
Ref Expression
lmiisolem (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))

Proof of Theorem lmiisolem
StepHypRef Expression
1 ismid.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 ismid.d . . . . . . . 8 = (dist‘𝐺)
3 ismid.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
4 ismid.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐺 ∈ TarskiG)
6 lmiisolem.z . . . . . . . . . 10 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))
7 ismid.1 . . . . . . . . . . 11 (𝜑𝐺DimTarskiG≥2)
8 lmiiso.1 . . . . . . . . . . . 12 (𝜑𝐴𝑃)
9 lmif.m . . . . . . . . . . . . 13 𝑀 = ((lInvG‘𝐺)‘𝐷)
10 lmif.l . . . . . . . . . . . . 13 𝐿 = (LineG‘𝐺)
11 lmif.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ran 𝐿)
121, 2, 3, 4, 7, 9, 10, 11, 8lmicl 25578 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐴) ∈ 𝑃)
131, 2, 3, 4, 7, 8, 12midcl 25569 . . . . . . . . . . 11 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
14 lmiiso.2 . . . . . . . . . . . 12 (𝜑𝐵𝑃)
151, 2, 3, 4, 7, 9, 10, 11, 14lmicl 25578 . . . . . . . . . . . 12 (𝜑 → (𝑀𝐵) ∈ 𝑃)
161, 2, 3, 4, 7, 14, 15midcl 25569 . . . . . . . . . . 11 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
171, 2, 3, 4, 7, 13, 16midcl 25569 . . . . . . . . . 10 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) ∈ 𝑃)
186, 17syl5eqel 2702 . . . . . . . . 9 (𝜑𝑍𝑃)
1918adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍𝑃)
20 eqid 2621 . . . . . . . . . 10 (pInvG‘𝐺) = (pInvG‘𝐺)
21 lmiisolem.s . . . . . . . . . 10 𝑆 = ((pInvG‘𝐺)‘𝑍)
221, 2, 3, 10, 20, 4, 18, 21, 8mircl 25456 . . . . . . . . 9 (𝜑 → (𝑆𝐴) ∈ 𝑃)
2322adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑆𝐴) ∈ 𝑃)
248adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐴𝑃)
251, 2, 3, 10, 20, 5, 19, 21, 24mircgr 25452 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 (𝑆𝐴)) = (𝑍 𝐴))
26 simpr 477 . . . . . . . . 9 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑆𝐴) = 𝑍)
2726eqcomd 2627 . . . . . . . 8 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍 = (𝑆𝐴))
281, 2, 3, 5, 19, 23, 19, 24, 25, 27tgcgreq 25277 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍 = 𝐴)
29 simpr 477 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵)))
3029oveq2d 6620 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))) = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))))
3130, 6syl6reqr 2674 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))))
324adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺 ∈ TarskiG)
337adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺DimTarskiG≥2)
3413adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
351, 2, 3, 32, 33, 34, 34midid 25573 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐴(midG‘𝐺)(𝑀𝐴))) = (𝐴(midG‘𝐺)(𝑀𝐴)))
3631, 35eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 = (𝐴(midG‘𝐺)(𝑀𝐴)))
37 eqidd 2622 . . . . . . . . . . . . 13 (𝜑 → (𝑀𝐴) = (𝑀𝐴))
381, 2, 3, 4, 7, 9, 10, 11, 8, 12islmib 25579 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝐴) = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))))
3937, 38mpbid 222 . . . . . . . . . . . 12 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴))))
4039simpld 475 . . . . . . . . . . 11 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
4140adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
4236, 41eqeltrd 2698 . . . . . . . . 9 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝐷)
434adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐺 ∈ TarskiG)
4413adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
4516adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
4618adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝑃)
47 simpr 477 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵)))
481, 2, 3, 4, 7, 13, 16midbtwn 25571 . . . . . . . . . . . . 13 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
496, 48syl5eqel 2702 . . . . . . . . . . . 12 (𝜑𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
5049adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐼(𝐵(midG‘𝐺)(𝑀𝐵))))
511, 3, 10, 43, 44, 45, 46, 47, 50btwnlng1 25414 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍 ∈ ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
5211adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐷 ∈ ran 𝐿)
5340adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
54 eqidd 2622 . . . . . . . . . . . . . 14 (𝜑 → (𝑀𝐵) = (𝑀𝐵))
551, 2, 3, 4, 7, 9, 10, 11, 14, 15islmib 25579 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝐵) = (𝑀𝐵) ↔ ((𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))))
5654, 55mpbid 222 . . . . . . . . . . . . 13 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵))))
5756simpld 475 . . . . . . . . . . . 12 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
5857adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
591, 3, 10, 43, 44, 45, 47, 47, 52, 53, 58tglinethru 25431 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝐷 = ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
6051, 59eleqtrrd 2701 . . . . . . . . 9 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ (𝐵(midG‘𝐺)(𝑀𝐵))) → 𝑍𝐷)
6142, 60pm2.61dane 2877 . . . . . . . 8 (𝜑𝑍𝐷)
6261adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝑍𝐷)
6328, 62eqeltrrd 2699 . . . . . 6 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → 𝐴𝐷)
641, 2, 3, 4, 7, 9, 10, 11, 8lmiinv 25584 . . . . . . 7 (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
6564biimpar 502 . . . . . 6 ((𝜑𝐴𝐷) → (𝑀𝐴) = 𝐴)
6663, 65syldan 487 . . . . 5 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑀𝐴) = 𝐴)
6766, 28eqtr4d 2658 . . . 4 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑀𝐴) = 𝑍)
6867oveq1d 6619 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝑍 (𝑀𝐵)))
69 eqidd 2622 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝑍 = 𝑍)
704adantr 481 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → 𝐺 ∈ TarskiG)
7114adantr 481 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵𝑃)
7216adantr 481 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
731, 2, 3, 4, 7, 14, 15midbtwn 25571 . . . . . . . . . . . 12 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
7473adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
75 simpr 477 . . . . . . . . . . . 12 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = (𝑀𝐵))
7675oveq2d 6620 . . . . . . . . . . 11 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵𝐼𝐵) = (𝐵𝐼(𝑀𝐵)))
7774, 76eleqtrrd 2701 . . . . . . . . . 10 ((𝜑𝐵 = (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼𝐵))
781, 2, 3, 70, 71, 72, 77axtgbtwnid 25265 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = (𝐵(midG‘𝐺)(𝑀𝐵)))
79 eqidd 2622 . . . . . . . . 9 ((𝜑𝐵 = (𝑀𝐵)) → 𝐵 = 𝐵)
8069, 78, 79s3eqd 13546 . . . . . . . 8 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍𝐵𝐵”⟩ = ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩)
811, 2, 3, 10, 20, 4, 18, 14, 14ragtrivb 25497 . . . . . . . . 9 (𝜑 → ⟨“𝑍𝐵𝐵”⟩ ∈ (∟G‘𝐺))
8281adantr 481 . . . . . . . 8 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍𝐵𝐵”⟩ ∈ (∟G‘𝐺))
8380, 82eqeltrrd 2699 . . . . . . 7 ((𝜑𝐵 = (𝑀𝐵)) → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
844adantr 481 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐺 ∈ TarskiG)
8561adantr 481 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝑍𝐷)
8657adantr 481 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝐷)
8714adantr 481 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐵𝑃)
88 df-ne 2791 . . . . . . . . . 10 (𝐵 ≠ (𝑀𝐵) ↔ ¬ 𝐵 = (𝑀𝐵))
8956simprd 479 . . . . . . . . . . . 12 (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))
9089orcomd 403 . . . . . . . . . . 11 (𝜑 → (𝐵 = (𝑀𝐵) ∨ 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵))))
9190orcanai 951 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐵 = (𝑀𝐵)) → 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)))
9288, 91sylan2b 492 . . . . . . . . 9 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐷(⟂G‘𝐺)(𝐵𝐿(𝑀𝐵)))
9315adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝑀𝐵) ∈ 𝑃)
94 simpr 477 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐵 ≠ (𝑀𝐵))
9516adantr 481 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ 𝑃)
964adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐺 ∈ TarskiG)
9714adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐵𝑃)
9815adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝑀𝐵) ∈ 𝑃)
997adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐺DimTarskiG≥2)
100 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵)
1011, 2, 3, 96, 99, 97, 98, 100midcgr 25572 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵 𝐵) = (𝐵 (𝑀𝐵)))
102101eqcomd 2627 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → (𝐵 (𝑀𝐵)) = (𝐵 𝐵))
1031, 2, 3, 96, 97, 98, 97, 102axtgcgrid 25262 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵) → 𝐵 = (𝑀𝐵))
104103ex 450 . . . . . . . . . . . . 13 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) = 𝐵𝐵 = (𝑀𝐵)))
105104necon3d 2811 . . . . . . . . . . . 12 (𝜑 → (𝐵 ≠ (𝑀𝐵) → (𝐵(midG‘𝐺)(𝑀𝐵)) ≠ 𝐵))
106105imp 445 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ≠ 𝐵)
10773adantr 481 . . . . . . . . . . . 12 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐼(𝑀𝐵)))
1081, 3, 10, 84, 87, 93, 95, 94, 107btwnlng1 25414 . . . . . . . . . . 11 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵(midG‘𝐺)(𝑀𝐵)) ∈ (𝐵𝐿(𝑀𝐵)))
1091, 3, 10, 84, 87, 93, 94, 95, 106, 108tglineelsb2 25427 . . . . . . . . . 10 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵𝐿(𝑀𝐵)) = (𝐵𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
1101, 3, 10, 84, 95, 87, 106tglinecom 25430 . . . . . . . . . 10 ((𝜑𝐵 ≠ (𝑀𝐵)) → ((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵) = (𝐵𝐿(𝐵(midG‘𝐺)(𝑀𝐵))))
111109, 110eqtr4d 2658 . . . . . . . . 9 ((𝜑𝐵 ≠ (𝑀𝐵)) → (𝐵𝐿(𝑀𝐵)) = ((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵))
11292, 111breqtrd 4639 . . . . . . . 8 ((𝜑𝐵 ≠ (𝑀𝐵)) → 𝐷(⟂G‘𝐺)((𝐵(midG‘𝐺)(𝑀𝐵))𝐿𝐵))
1131, 2, 3, 10, 84, 85, 86, 87, 112perpdrag 25520 . . . . . . 7 ((𝜑𝐵 ≠ (𝑀𝐵)) → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
11483, 113pm2.61dane 2877 . . . . . 6 (𝜑 → ⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺))
1151, 2, 3, 10, 20, 4, 18, 16, 14israg 25492 . . . . . 6 (𝜑 → (⟨“𝑍(𝐵(midG‘𝐺)(𝑀𝐵))𝐵”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐵) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵))))
116114, 115mpbid 222 . . . . 5 (𝜑 → (𝑍 𝐵) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵)))
117 eqidd 2622 . . . . . . 7 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) = (𝐵(midG‘𝐺)(𝑀𝐵)))
1181, 2, 3, 4, 7, 14, 15, 20, 16ismidb 25570 . . . . . . 7 (𝜑 → ((𝑀𝐵) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) ↔ (𝐵(midG‘𝐺)(𝑀𝐵)) = (𝐵(midG‘𝐺)(𝑀𝐵))))
119117, 118mpbird 247 . . . . . 6 (𝜑 → (𝑀𝐵) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵))
120119oveq2d 6620 . . . . 5 (𝜑 → (𝑍 (𝑀𝐵)) = (𝑍 (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵)))
121116, 120eqtr4d 2658 . . . 4 (𝜑 → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
122121adantr 481 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
12328oveq1d 6619 . . 3 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → (𝑍 𝐵) = (𝐴 𝐵))
12468, 122, 1233eqtr2d 2661 . 2 ((𝜑 ∧ (𝑆𝐴) = 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
1254adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐺 ∈ TarskiG)
12622adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆𝐴) ∈ 𝑃)
12718adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍𝑃)
1288adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐴𝑃)
1291, 2, 3, 10, 20, 4, 18, 21, 12mircl 25456 . . . . 5 (𝜑 → (𝑆‘(𝑀𝐴)) ∈ 𝑃)
130129adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆‘(𝑀𝐴)) ∈ 𝑃)
13112adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑀𝐴) ∈ 𝑃)
13214adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝐵𝑃)
13315adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑀𝐵) ∈ 𝑃)
134 simpr 477 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑆𝐴) ≠ 𝑍)
1351, 2, 3, 10, 20, 125, 127, 21, 128mirbtwn 25453 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍 ∈ ((𝑆𝐴)𝐼𝐴))
1361, 2, 3, 10, 20, 125, 127, 21, 131mirbtwn 25453 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → 𝑍 ∈ ((𝑆‘(𝑀𝐴))𝐼(𝑀𝐴)))
137 eqidd 2622 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝑍 = 𝑍)
1384adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → 𝐺 ∈ TarskiG)
1398adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴𝑃)
14013adantr 481 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
1411, 2, 3, 4, 7, 8, 12midbtwn 25571 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
142141adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
143 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = (𝑀𝐴))
144143oveq2d 6620 . . . . . . . . . . . . . 14 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴𝐼𝐴) = (𝐴𝐼(𝑀𝐴)))
145142, 144eleqtrrd 2701 . . . . . . . . . . . . 13 ((𝜑𝐴 = (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼𝐴))
1461, 2, 3, 138, 139, 140, 145axtgbtwnid 25265 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = (𝐴(midG‘𝐺)(𝑀𝐴)))
147 eqidd 2622 . . . . . . . . . . . 12 ((𝜑𝐴 = (𝑀𝐴)) → 𝐴 = 𝐴)
148137, 146, 147s3eqd 13546 . . . . . . . . . . 11 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍𝐴𝐴”⟩ = ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩)
1491, 2, 3, 10, 20, 4, 18, 8, 8ragtrivb 25497 . . . . . . . . . . . 12 (𝜑 → ⟨“𝑍𝐴𝐴”⟩ ∈ (∟G‘𝐺))
150149adantr 481 . . . . . . . . . . 11 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍𝐴𝐴”⟩ ∈ (∟G‘𝐺))
151148, 150eqeltrrd 2699 . . . . . . . . . 10 ((𝜑𝐴 = (𝑀𝐴)) → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
1524adantr 481 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐺 ∈ TarskiG)
15361adantr 481 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝑍𝐷)
15440adantr 481 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝐷)
1558adantr 481 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐴𝑃)
156 df-ne 2791 . . . . . . . . . . . . 13 (𝐴 ≠ (𝑀𝐴) ↔ ¬ 𝐴 = (𝑀𝐴))
15739simprd 479 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)) ∨ 𝐴 = (𝑀𝐴)))
158157orcomd 403 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 = (𝑀𝐴) ∨ 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴))))
159158orcanai 951 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐴 = (𝑀𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)))
160156, 159sylan2b 492 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐷(⟂G‘𝐺)(𝐴𝐿(𝑀𝐴)))
16112adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝑀𝐴) ∈ 𝑃)
162 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐴 ≠ (𝑀𝐴))
16313adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ 𝑃)
1644adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐺 ∈ TarskiG)
1658adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐴𝑃)
16612adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝑀𝐴) ∈ 𝑃)
1677adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐺DimTarskiG≥2)
168 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴)
1691, 2, 3, 164, 167, 165, 166, 168midcgr 25572 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴 𝐴) = (𝐴 (𝑀𝐴)))
170169eqcomd 2627 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → (𝐴 (𝑀𝐴)) = (𝐴 𝐴))
1711, 2, 3, 164, 165, 166, 165, 170axtgcgrid 25262 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴) → 𝐴 = (𝑀𝐴))
172171ex 450 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴(midG‘𝐺)(𝑀𝐴)) = 𝐴𝐴 = (𝑀𝐴)))
173172necon3d 2811 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ≠ (𝑀𝐴) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ 𝐴))
174173imp 445 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ≠ 𝐴)
175141adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐼(𝑀𝐴)))
1761, 3, 10, 152, 155, 161, 163, 162, 175btwnlng1 25414 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴(midG‘𝐺)(𝑀𝐴)) ∈ (𝐴𝐿(𝑀𝐴)))
1771, 3, 10, 152, 155, 161, 162, 163, 174, 176tglineelsb2 25427 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴𝐿(𝑀𝐴)) = (𝐴𝐿(𝐴(midG‘𝐺)(𝑀𝐴))))
1781, 3, 10, 152, 163, 155, 174tglinecom 25430 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ (𝑀𝐴)) → ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴) = (𝐴𝐿(𝐴(midG‘𝐺)(𝑀𝐴))))
179177, 178eqtr4d 2658 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ (𝑀𝐴)) → (𝐴𝐿(𝑀𝐴)) = ((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴))
180160, 179breqtrd 4639 . . . . . . . . . . 11 ((𝜑𝐴 ≠ (𝑀𝐴)) → 𝐷(⟂G‘𝐺)((𝐴(midG‘𝐺)(𝑀𝐴))𝐿𝐴))
1811, 2, 3, 10, 152, 153, 154, 155, 180perpdrag 25520 . . . . . . . . . 10 ((𝜑𝐴 ≠ (𝑀𝐴)) → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
182151, 181pm2.61dane 2877 . . . . . . . . 9 (𝜑 → ⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺))
1831, 2, 3, 10, 20, 4, 18, 13, 8israg 25492 . . . . . . . . 9 (𝜑 → (⟨“𝑍(𝐴(midG‘𝐺)(𝑀𝐴))𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝑍 𝐴) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴))))
184182, 183mpbid 222 . . . . . . . 8 (𝜑 → (𝑍 𝐴) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴)))
185 eqidd 2622 . . . . . . . . . 10 (𝜑 → (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐴(midG‘𝐺)(𝑀𝐴)))
1861, 2, 3, 4, 7, 8, 12, 20, 13ismidb 25570 . . . . . . . . . 10 (𝜑 → ((𝑀𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴) ↔ (𝐴(midG‘𝐺)(𝑀𝐴)) = (𝐴(midG‘𝐺)(𝑀𝐴))))
187185, 186mpbird 247 . . . . . . . . 9 (𝜑 → (𝑀𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴))
188187oveq2d 6620 . . . . . . . 8 (𝜑 → (𝑍 (𝑀𝐴)) = (𝑍 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)(𝑀𝐴)))‘𝐴)))
189184, 188eqtr4d 2658 . . . . . . 7 (𝜑 → (𝑍 𝐴) = (𝑍 (𝑀𝐴)))
1901, 2, 3, 10, 20, 4, 18, 21, 8mircgr 25452 . . . . . . 7 (𝜑 → (𝑍 (𝑆𝐴)) = (𝑍 𝐴))
1911, 2, 3, 10, 20, 4, 18, 21, 12mircgr 25452 . . . . . . 7 (𝜑 → (𝑍 (𝑆‘(𝑀𝐴))) = (𝑍 (𝑀𝐴)))
192189, 190, 1913eqtr4d 2665 . . . . . 6 (𝜑 → (𝑍 (𝑆𝐴)) = (𝑍 (𝑆‘(𝑀𝐴))))
193192adantr 481 . . . . 5 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 (𝑆𝐴)) = (𝑍 (𝑆‘(𝑀𝐴))))
1941, 2, 3, 125, 127, 126, 127, 130, 193tgcgrcomlr 25275 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑆𝐴) 𝑍) = ((𝑆‘(𝑀𝐴)) 𝑍))
195189adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 𝐴) = (𝑍 (𝑀𝐴)))
19621fveq1i 6149 . . . . . . . . . 10 (𝑆‘(𝐴(midG‘𝐺)(𝑀𝐴))) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴)))
1971, 2, 3, 4, 7, 8, 12, 21, 18mirmid 25575 . . . . . . . . . 10 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝑆‘(𝐴(midG‘𝐺)(𝑀𝐴))))
1986eqcomi 2630 . . . . . . . . . . 11 ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) = 𝑍
1991, 2, 3, 4, 7, 13, 16, 20, 18ismidb 25570 . . . . . . . . . . 11 (𝜑 → ((𝐵(midG‘𝐺)(𝑀𝐵)) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴))) ↔ ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵))) = 𝑍))
200198, 199mpbiri 248 . . . . . . . . . 10 (𝜑 → (𝐵(midG‘𝐺)(𝑀𝐵)) = (((pInvG‘𝐺)‘𝑍)‘(𝐴(midG‘𝐺)(𝑀𝐴))))
201196, 197, 2003eqtr4a 2681 . . . . . . . . 9 (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝐵(midG‘𝐺)(𝑀𝐵)))
2021, 2, 3, 4, 7, 22, 129, 20, 16ismidb 25570 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝑀𝐴)) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴)) ↔ ((𝑆𝐴)(midG‘𝐺)(𝑆‘(𝑀𝐴))) = (𝐵(midG‘𝐺)(𝑀𝐵))))
203201, 202mpbird 247 . . . . . . . 8 (𝜑 → (𝑆‘(𝑀𝐴)) = (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴)))
204119, 203oveq12d 6622 . . . . . . 7 (𝜑 → ((𝑀𝐵) (𝑆‘(𝑀𝐴))) = ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴))))
205 eqid 2621 . . . . . . . 8 ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵))) = ((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))
2061, 2, 3, 10, 20, 4, 16, 205, 14, 22miriso 25465 . . . . . . 7 (𝜑 → ((((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘𝐵) (((pInvG‘𝐺)‘(𝐵(midG‘𝐺)(𝑀𝐵)))‘(𝑆𝐴))) = (𝐵 (𝑆𝐴)))
207204, 206eqtr2d 2656 . . . . . 6 (𝜑 → (𝐵 (𝑆𝐴)) = ((𝑀𝐵) (𝑆‘(𝑀𝐴))))
208207adantr 481 . . . . 5 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝐵 (𝑆𝐴)) = ((𝑀𝐵) (𝑆‘(𝑀𝐴))))
2091, 2, 3, 125, 132, 126, 133, 130, 208tgcgrcomlr 25275 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑆𝐴) 𝐵) = ((𝑆‘(𝑀𝐴)) (𝑀𝐵)))
210121adantr 481 . . . 4 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝑍 𝐵) = (𝑍 (𝑀𝐵)))
2111, 2, 3, 125, 126, 127, 128, 130, 127, 131, 132, 133, 134, 135, 136, 194, 195, 209, 210axtg5seg 25264 . . 3 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → (𝐴 𝐵) = ((𝑀𝐴) (𝑀𝐵)))
212211eqcomd 2627 . 2 ((𝜑 ∧ (𝑆𝐴) ≠ 𝑍) → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
213124, 212pm2.61dane 2877 1 (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  ran crn 5075  cfv 5847  (class class class)co 6604  2c2 11014  ⟨“cs3 13524  Basecbs 15781  distcds 15871  TarskiGcstrkg 25229  DimTarskiGcstrkgld 25233  Itvcitv 25235  LineGclng 25236  pInvGcmir 25447  ∟Gcrag 25488  ⟂Gcperpg 25490  midGcmid 25564  lInvGclmi 25565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-trkgc 25247  df-trkgb 25248  df-trkgcb 25249  df-trkgld 25251  df-trkg 25252  df-cgrg 25306  df-leg 25378  df-mir 25448  df-rag 25489  df-perpg 25491  df-mid 25566  df-lmi 25567
This theorem is referenced by:  lmiiso  25589
  Copyright terms: Public domain W3C validator