MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimco Structured version   Visualization version   GIF version

Theorem lmimco 20405
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmimco ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))

Proof of Theorem lmimco
StepHypRef Expression
1 eqid 2760 . . 3 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2760 . . 3 (Base‘𝑇) = (Base‘𝑇)
31, 2islmim 19284 . 2 (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)))
4 eqid 2760 . . 3 (Base‘𝑅) = (Base‘𝑅)
54, 1islmim 19284 . 2 (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
6 lmhmco 19265 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
76ad2ant2r 800 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
8 f1oco 6321 . . . 4 ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
98ad2ant2l 799 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
104, 2islmim 19284 . . 3 ((𝐹𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)))
117, 9, 10sylanbrc 701 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
123, 5, 11syl2anb 497 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  ccom 5270  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  Basecbs 16079   LMHom clmhm 19241   LMIso clmim 19242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-map 8027  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-ghm 17879  df-lmod 19087  df-lmhm 19244  df-lmim 19245
This theorem is referenced by:  lmictra  20406
  Copyright terms: Public domain W3C validator