![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
lmimco | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2760 | . . 3 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | islmim 19284 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))) |
4 | eqid 2760 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4, 1 | islmim 19284 | . 2 ⊢ (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
6 | lmhmco 19265 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) | |
7 | 6 | ad2ant2r 800 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) |
8 | f1oco 6321 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) | |
9 | 8 | ad2ant2l 799 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) |
10 | 4, 2 | islmim 19284 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))) |
11 | 7, 9, 10 | sylanbrc 701 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
12 | 3, 5, 11 | syl2anb 497 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ∘ ccom 5270 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 LMHom clmhm 19241 LMIso clmim 19242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-map 8027 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-grp 17646 df-ghm 17879 df-lmod 19087 df-lmhm 19244 df-lmim 19245 |
This theorem is referenced by: lmictra 20406 |
Copyright terms: Public domain | W3C validator |