MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimid Structured version   Visualization version   GIF version

Theorem lmimid 25806
Description: If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
lmicl.1 (𝜑𝐴𝑃)
lmimid.s 𝑆 = ((pInvG‘𝐺)‘𝐵)
lmimid.r (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
lmimid.a (𝜑𝐴𝐷)
lmimid.b (𝜑𝐵𝐷)
lmimid.c (𝜑𝐶𝑃)
lmimid.d (𝜑𝐴𝐵)
Assertion
Ref Expression
lmimid (𝜑 → (𝑀𝐶) = (𝑆𝐶))

Proof of Theorem lmimid
StepHypRef Expression
1 lmimid.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝐵)
21a1i 11 . . . . . 6 (𝜑𝑆 = ((pInvG‘𝐺)‘𝐵))
32fveq1d 6306 . . . . 5 (𝜑 → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
4 ismid.p . . . . . 6 𝑃 = (Base‘𝐺)
5 ismid.d . . . . . 6 = (dist‘𝐺)
6 ismid.i . . . . . 6 𝐼 = (Itv‘𝐺)
7 ismid.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
8 ismid.1 . . . . . 6 (𝜑𝐺DimTarskiG≥2)
9 lmimid.c . . . . . 6 (𝜑𝐶𝑃)
10 lmif.l . . . . . . 7 𝐿 = (LineG‘𝐺)
11 eqid 2724 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
12 lmif.d . . . . . . . 8 (𝜑𝐷 ∈ ran 𝐿)
13 lmimid.b . . . . . . . 8 (𝜑𝐵𝐷)
144, 10, 6, 7, 12, 13tglnpt 25564 . . . . . . 7 (𝜑𝐵𝑃)
154, 5, 6, 10, 11, 7, 14, 1, 9mircl 25676 . . . . . 6 (𝜑 → (𝑆𝐶) ∈ 𝑃)
164, 5, 6, 7, 8, 9, 15, 11, 14ismidb 25790 . . . . 5 (𝜑 → ((𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶) ↔ (𝐶(midG‘𝐺)(𝑆𝐶)) = 𝐵))
173, 16mpbid 222 . . . 4 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) = 𝐵)
1817, 13eqeltrd 2803 . . 3 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) ∈ 𝐷)
19 df-ne 2897 . . . . . 6 (𝐶 ≠ (𝑆𝐶) ↔ ¬ 𝐶 = (𝑆𝐶))
207adantr 472 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐺 ∈ TarskiG)
2112adantr 472 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐷 ∈ ran 𝐿)
229adantr 472 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶𝑃)
2315adantr 472 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → (𝑆𝐶) ∈ 𝑃)
24 simpr 479 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶 ≠ (𝑆𝐶))
254, 6, 10, 20, 22, 23, 24tgelrnln 25645 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → (𝐶𝐿(𝑆𝐶)) ∈ ran 𝐿)
2613adantr 472 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵𝐷)
2714adantr 472 . . . . . . . . . 10 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵𝑃)
284, 5, 6, 7, 8, 9, 15midbtwn 25791 . . . . . . . . . . . 12 (𝜑 → (𝐶(midG‘𝐺)(𝑆𝐶)) ∈ (𝐶𝐼(𝑆𝐶)))
2917, 28eqeltrrd 2804 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐶𝐼(𝑆𝐶)))
3029adantr 472 . . . . . . . . . 10 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐶𝐼(𝑆𝐶)))
314, 6, 10, 20, 22, 23, 27, 24, 30btwnlng1 25634 . . . . . . . . 9 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐶𝐿(𝑆𝐶)))
3226, 31elind 3906 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐵 ∈ (𝐷 ∩ (𝐶𝐿(𝑆𝐶))))
33 lmimid.a . . . . . . . . 9 (𝜑𝐴𝐷)
3433adantr 472 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐴𝐷)
354, 6, 10, 20, 22, 23, 24tglinerflx1 25648 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶 ∈ (𝐶𝐿(𝑆𝐶)))
36 lmimid.d . . . . . . . . 9 (𝜑𝐴𝐵)
3736adantr 472 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐴𝐵)
384, 5, 6, 10, 11, 7, 14, 1, 9mirinv 25681 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐶) = 𝐶𝐵 = 𝐶))
39 eqcom 2731 . . . . . . . . . . . . . 14 (𝐵 = 𝐶𝐶 = 𝐵)
4038, 39syl6bb 276 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐶) = 𝐶𝐶 = 𝐵))
4140biimpar 503 . . . . . . . . . . . 12 ((𝜑𝐶 = 𝐵) → (𝑆𝐶) = 𝐶)
4241eqcomd 2730 . . . . . . . . . . 11 ((𝜑𝐶 = 𝐵) → 𝐶 = (𝑆𝐶))
4342ex 449 . . . . . . . . . 10 (𝜑 → (𝐶 = 𝐵𝐶 = (𝑆𝐶)))
4443necon3d 2917 . . . . . . . . 9 (𝜑 → (𝐶 ≠ (𝑆𝐶) → 𝐶𝐵))
4544imp 444 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐶𝐵)
46 lmimid.r . . . . . . . . 9 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
4746adantr 472 . . . . . . . 8 ((𝜑𝐶 ≠ (𝑆𝐶)) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
484, 5, 6, 10, 20, 21, 25, 32, 34, 35, 37, 45, 47ragperp 25732 . . . . . . 7 ((𝜑𝐶 ≠ (𝑆𝐶)) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)))
4948ex 449 . . . . . 6 (𝜑 → (𝐶 ≠ (𝑆𝐶) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5019, 49syl5bir 233 . . . . 5 (𝜑 → (¬ 𝐶 = (𝑆𝐶) → 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5150orrd 392 . . . 4 (𝜑 → (𝐶 = (𝑆𝐶) ∨ 𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶))))
5251orcomd 402 . . 3 (𝜑 → (𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)) ∨ 𝐶 = (𝑆𝐶)))
53 lmif.m . . . 4 𝑀 = ((lInvG‘𝐺)‘𝐷)
544, 5, 6, 7, 8, 53, 10, 12, 9, 15islmib 25799 . . 3 (𝜑 → ((𝑆𝐶) = (𝑀𝐶) ↔ ((𝐶(midG‘𝐺)(𝑆𝐶)) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐶𝐿(𝑆𝐶)) ∨ 𝐶 = (𝑆𝐶)))))
5518, 52, 54mpbir2and 995 . 2 (𝜑 → (𝑆𝐶) = (𝑀𝐶))
5655eqcomd 2730 1 (𝜑 → (𝑀𝐶) = (𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1596  wcel 2103  wne 2896   class class class wbr 4760  ran crn 5219  cfv 6001  (class class class)co 6765  2c2 11183  ⟨“cs3 13708  Basecbs 15980  distcds 16073  TarskiGcstrkg 25449  DimTarskiGcstrkgld 25453  Itvcitv 25455  LineGclng 25456  pInvGcmir 25667  ∟Gcrag 25708  ⟂Gcperpg 25710  midGcmid 25784  lInvGclmi 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-xnn0 11477  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-hash 13233  df-word 13406  df-concat 13408  df-s1 13409  df-s2 13714  df-s3 13715  df-trkgc 25467  df-trkgb 25468  df-trkgcb 25469  df-trkgld 25471  df-trkg 25472  df-cgrg 25526  df-leg 25598  df-mir 25668  df-rag 25709  df-perpg 25711  df-mid 25786  df-lmi 25787
This theorem is referenced by:  hypcgrlem1  25811
  Copyright terms: Public domain W3C validator