MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimot Structured version   Visualization version   GIF version

Theorem lmimot 25403
Description: Line mirroring is a motion of the geometric space. Theorem 10.11 of [Schwabhauser] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
lmimot (𝜑𝑀 ∈ (𝐺Ismt𝐺))

Proof of Theorem lmimot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismid.p . . 3 𝑃 = (Base‘𝐺)
2 ismid.d . . 3 = (dist‘𝐺)
3 ismid.i . . 3 𝐼 = (Itv‘𝐺)
4 ismid.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 ismid.1 . . 3 (𝜑𝐺DimTarskiG≥2)
6 lmif.m . . 3 𝑀 = ((lInvG‘𝐺)‘𝐷)
7 lmif.l . . 3 𝐿 = (LineG‘𝐺)
8 lmif.d . . 3 (𝜑𝐷 ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7, 8lmif1o 25400 . 2 (𝜑𝑀:𝑃1-1-onto𝑃)
104adantr 479 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺 ∈ TarskiG)
115adantr 479 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺DimTarskiG≥2)
128adantr 479 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐷 ∈ ran 𝐿)
13 simprl 789 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
14 simprr 791 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
151, 2, 3, 10, 11, 6, 7, 12, 13, 14lmiiso 25402 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))
1615ralrimivva 2948 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))
171, 2ismot 25143 . . 3 (𝐺 ∈ TarskiG → (𝑀 ∈ (𝐺Ismt𝐺) ↔ (𝑀:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))))
184, 17syl 17 . 2 (𝜑 → (𝑀 ∈ (𝐺Ismt𝐺) ↔ (𝑀:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑀𝑎) (𝑀𝑏)) = (𝑎 𝑏))))
199, 16, 18mpbir2and 958 1 (𝜑𝑀 ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wral 2890   class class class wbr 4572  ran crn 5024  1-1-ontowf1o 5784  cfv 5785  (class class class)co 6522  2c2 10912  Basecbs 15636  distcds 15718  TarskiGcstrkg 25041  DimTarskiGcstrkgld 25045  Itvcitv 25047  LineGclng 25048  Ismtcismt 25140  lInvGclmi 25378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-card 8620  df-cda 8845  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-fzo 12285  df-hash 12930  df-word 13095  df-concat 13097  df-s1 13098  df-s2 13385  df-s3 13386  df-trkgc 25059  df-trkgb 25060  df-trkgcb 25061  df-trkgld 25063  df-trkg 25064  df-cgrg 25119  df-ismt 25141  df-leg 25191  df-mir 25261  df-rag 25302  df-perpg 25304  df-mid 25379  df-lmi 25380
This theorem is referenced by:  hypcgrlem2  25405
  Copyright terms: Public domain W3C validator