Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmlimxrge0 Structured version   Visualization version   GIF version

Theorem lmlimxrge0 29116
Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
lmlimxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmlimxrge0.f (𝜑𝐹:ℕ⟶𝑋)
lmlimxrge0.p (𝜑𝑃𝑋)
lmlimxrge0.x 𝑋 ⊆ (0[,)+∞)
Assertion
Ref Expression
lmlimxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))

Proof of Theorem lmlimxrge0
StepHypRef Expression
1 lmlimxrge0.j . . . 4 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 xrge0topn 29111 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2eqtri 2632 . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
4 letopon 20767 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
5 iccssxr 12086 . . . 4 (0[,]+∞) ⊆ ℝ*
6 resttopon 20723 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
74, 5, 6mp2an 704 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
83, 7eqeltri 2684 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
9 lmlimxrge0.f . 2 (𝜑𝐹:ℕ⟶𝑋)
10 lmlimxrge0.p . 2 (𝜑𝑃𝑋)
11 fvex 6098 . . . 4 (ordTop‘ ≤ ) ∈ V
12 lmlimxrge0.x . . . . 5 𝑋 ⊆ (0[,)+∞)
13 icossicc 12090 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
1412, 13sstri 3577 . . . 4 𝑋 ⊆ (0[,]+∞)
15 ovex 6555 . . . 4 (0[,]+∞) ∈ V
16 restabs 20727 . . . 4 (((ordTop‘ ≤ ) ∈ V ∧ 𝑋 ⊆ (0[,]+∞) ∧ (0[,]+∞) ∈ V) → (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋))
1711, 14, 15, 16mp3an 1416 . . 3 (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)
183oveq1i 6537 . . 3 (𝐽t 𝑋) = (((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↾t 𝑋)
19 rge0ssre 12110 . . . . 5 (0[,)+∞) ⊆ ℝ
2012, 19sstri 3577 . . . 4 𝑋 ⊆ ℝ
21 eqid 2610 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 eqid 2610 . . . . 5 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2321, 22xrrest2 22367 . . . 4 (𝑋 ⊆ ℝ → ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋))
2420, 23ax-mp 5 . . 3 ((TopOpen‘ℂfld) ↾t 𝑋) = ((ordTop‘ ≤ ) ↾t 𝑋)
2517, 18, 243eqtr4i 2642 . 2 (𝐽t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
26 ax-resscn 9850 . . 3 ℝ ⊆ ℂ
2720, 26sstri 3577 . 2 𝑋 ⊆ ℂ
288, 9, 10, 25, 27lmlim 29115 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540   class class class wbr 4578  wf 5786  cfv 5790  (class class class)co 6527  cc 9791  cr 9792  0cc0 9793  +∞cpnf 9928  *cxr 9930  cle 9932  cn 10870  [,)cico 12007  [,]cicc 12008  cli 14012  s cress 15645  t crest 15853  TopOpenctopn 15854  ordTopcordt 15931  *𝑠cxrs 15932  fldccnfld 19516  TopOnctopon 20466  𝑡clm 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fi 8178  df-sup 8209  df-inf 8210  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-seq 12622  df-exp 12681  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-rest 15855  df-topn 15856  df-topgen 15876  df-ordt 15933  df-xrs 15934  df-ps 16972  df-tsr 16973  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-lm 20791  df-xms 21883  df-ms 21884
This theorem is referenced by:  esumcvg  29269  dstfrvclim1  29660
  Copyright terms: Public domain W3C validator