MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmbr Structured version   Visualization version   GIF version

Theorem lmmbr 23864
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 21840. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
Assertion
Ref Expression
lmmbr (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem lmmbr
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lmmbr.3 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 lmmbr.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
32mopntopon 23052 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
41, 3syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
54lmbr 21869 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
6 rpxr 12401 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
72blopn 23113 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽)
86, 7syl3an3 1161 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑥) ∈ 𝐽)
9 blcntr 23026 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑥))
10 eleq2 2904 . . . . . . . . . . . . . 14 (𝑢 = (𝑃(ball‘𝐷)𝑥) → (𝑃𝑢𝑃 ∈ (𝑃(ball‘𝐷)𝑥)))
11 feq3 6500 . . . . . . . . . . . . . . 15 (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝐹𝑦):𝑦𝑢 ↔ (𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1211rexbidv 3300 . . . . . . . . . . . . . 14 (𝑢 = (𝑃(ball‘𝐷)𝑥) → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢 ↔ ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1310, 12imbi12d 347 . . . . . . . . . . . . 13 (𝑢 = (𝑃(ball‘𝐷)𝑥) → ((𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
1413rspcva 3624 . . . . . . . . . . . 12 (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → (𝑃 ∈ (𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1514impancom 454 . . . . . . . . . . 11 (((𝑃(ball‘𝐷)𝑥) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑥)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
168, 9, 15syl2anc 586 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
17163expa 1114 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1817adantlrl 718 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ 𝑥 ∈ ℝ+) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
1918impancom 454 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → (𝑥 ∈ ℝ+ → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
2019ralrimiv 3184 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) → ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))
212mopni2 23106 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑃𝑢) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢)
22 r19.29 3257 . . . . . . . . . . . 12 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢))
23 fss 6530 . . . . . . . . . . . . . . . 16 (((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → (𝐹𝑦):𝑦𝑢)
2423expcom 416 . . . . . . . . . . . . . . 15 ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → ((𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐹𝑦):𝑦𝑢))
2524reximdv 3276 . . . . . . . . . . . . . 14 ((𝑃(ball‘𝐷)𝑥) ⊆ 𝑢 → (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
2625impcom 410 . . . . . . . . . . . . 13 ((∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2726rexlimivw 3285 . . . . . . . . . . . 12 (∃𝑥 ∈ ℝ+ (∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2822, 27syl 17 . . . . . . . . . . 11 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝑢) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
2921, 28sylan2 594 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) ∧ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑃𝑢)) → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)
30293exp2 1350 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥) → (𝐷 ∈ (∞Met‘𝑋) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))))
3130impcom 410 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
3231adantlr 713 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → (𝑢𝐽 → (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
3332ralrimiv 3184 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢))
3420, 33impbida 799 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
3534pm5.32da 581 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
36 df-3an 1085 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)))
37 df-3an 1085 . . . 4 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)) ↔ ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥)))
3835, 36, 373bitr4g 316 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
391, 38syl 17 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑦 ∈ ran ℤ(𝐹𝑦):𝑦𝑢)) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
405, 39bitrd 281 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ran ℤ(𝐹𝑦):𝑦⟶(𝑃(ball‘𝐷)𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939   class class class wbr 5069  ran crn 5559  cres 5560  wf 6354  cfv 6358  (class class class)co 7159  pm cpm 8410  cc 10538  *cxr 10677  cuz 12246  +crp 12392  ∞Metcxmet 20533  ballcbl 20535  MetOpencmopn 20538  TopOnctopon 21521  𝑡clm 21837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-lm 21840
This theorem is referenced by:  lmmbr2  23865  lmcau  23919
  Copyright terms: Public domain W3C validator