Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1lem2 Structured version   Visualization version   GIF version

Theorem lmod1lem2 44550
Description: Lemma 2 for lmod1 44554. (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1lem2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
Distinct variable groups:   𝐼,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑟)

Proof of Theorem lmod1lem2
StepHypRef Expression
1 fvex 6685 . . . . . . 7 (Base‘𝑅) ∈ V
2 snex 5334 . . . . . . 7 {𝐼} ∈ V
31, 2pm3.2i 473 . . . . . 6 ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)
4 mpoexga 7777 . . . . . 6 (((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
53, 4mp1i 13 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
6 lmod1.m . . . . . 6 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
76lmodvsca 16642 . . . . 5 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
85, 7syl 17 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
98eqcomd 2829 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ( ·𝑠𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦))
10 simprr 771 . . 3 (((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) ∧ (𝑥 = 𝑟𝑦 = 𝐼)) → 𝑦 = 𝐼)
11 simp3 1134 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → 𝑟 ∈ (Base‘𝑅))
12 snidg 4601 . . . 4 (𝐼𝑉𝐼 ∈ {𝐼})
13123ad2ant1 1129 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → 𝐼 ∈ {𝐼})
149, 10, 11, 13, 13ovmpod 7304 . 2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) = 𝐼)
15 snex 5334 . . . . . . 7 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
166lmodplusg 16640 . . . . . . 7 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
1715, 16mp1i 13 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
1817eqcomd 2829 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (+g𝑀) = {⟨⟨𝐼, 𝐼⟩, 𝐼⟩})
1918oveqd 7175 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝐼(+g𝑀)𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
20 df-ov 7161 . . . . 5 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
21 opex 5358 . . . . . 6 𝐼, 𝐼⟩ ∈ V
22 simp1 1132 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → 𝐼𝑉)
23 fvsng 6944 . . . . . 6 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
2421, 22, 23sylancr 589 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
2520, 24syl5eq 2870 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
2619, 25eqtrd 2858 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝐼(+g𝑀)𝐼) = 𝐼)
2726oveq2d 7174 . 2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = (𝑟( ·𝑠𝑀)𝐼))
282a1i 11 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → {𝐼} ∈ V)
291, 28, 4sylancr 589 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V)
3029, 7syl 17 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠𝑀))
3130eqcomd 2829 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ( ·𝑠𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦))
3231, 10, 11, 13, 13ovmpod 7304 . . . 4 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) = 𝐼)
3332, 32oveq12d 7176 . . 3 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = (𝐼(+g𝑀)𝐼))
3433, 26eqtrd 2858 . 2 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = 𝐼)
3514, 27, 343eqtr4d 2868 1 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3496  cun 3936  {csn 4569  {ctp 4573  cop 4575  cfv 6357  (class class class)co 7158  cmpo 7160  ndxcnx 16482  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570   ·𝑠 cvsca 16571  Ringcrg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-sca 16583  df-vsca 16584
This theorem is referenced by:  lmod1  44554
  Copyright terms: Public domain W3C validator