Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Visualization version   GIF version

Theorem lmod1zr 42075
Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zr ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)

Proof of Theorem lmod1zr
Dummy variables 𝑎 𝑏 𝑖 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
2 elsni 4138 . . . . . . . . . . 11 (𝑝 ∈ {⟨𝑍, 𝐼⟩} → 𝑝 = ⟨𝑍, 𝐼⟩)
3 fveq2 6085 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑍, 𝐼⟩ → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
43adantl 480 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
5 op2ndg 7046 . . . . . . . . . . . . . . 15 ((𝑍𝑊𝐼𝑉) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
65ancoms 467 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
7 snidg 4149 . . . . . . . . . . . . . . 15 (𝐼𝑉𝐼 ∈ {𝐼})
87adantr 479 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → 𝐼 ∈ {𝐼})
96, 8eqeltrd 2684 . . . . . . . . . . . . 13 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
109adantr 479 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
114, 10eqeltrd 2684 . . . . . . . . . . 11 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) ∈ {𝐼})
122, 11sylan2 489 . . . . . . . . . 10 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 ∈ {⟨𝑍, 𝐼⟩}) → (2nd𝑝) ∈ {𝐼})
13 eqid 2606 . . . . . . . . . 10 (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝))
1412, 13fmptd 6274 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼})
15 opex 4850 . . . . . . . . . 10 𝑍, 𝐼⟩ ∈ V
16 simpl 471 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → 𝐼𝑉)
17 fsng 6292 . . . . . . . . . 10 ((⟨𝑍, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1815, 16, 17sylancr 693 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1914, 18mpbid 220 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩})
20 xpsng 6294 . . . . . . . . . . 11 ((𝑍𝑊𝐼𝑉) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2120ancoms 467 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2221eqcomd 2612 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → {⟨𝑍, 𝐼⟩} = ({𝑍} × {𝐼}))
2322mpteq1d 4657 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
2419, 23eqtr3d 2642 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
25 vex 3172 . . . . . . . . . 10 𝑧 ∈ V
26 vex 3172 . . . . . . . . . 10 𝑖 ∈ V
2725, 26op2ndd 7044 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑖⟩ → (2nd𝑝) = 𝑖)
2827mpt2mpt 6625 . . . . . . . 8 (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖)
2928a1i 11 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖))
30 snex 4827 . . . . . . . . 9 {𝑍} ∈ V
31 lmod1zr.r . . . . . . . . . 10 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
3231rngbase 15767 . . . . . . . . 9 ({𝑍} ∈ V → {𝑍} = (Base‘𝑅))
3330, 32mp1i 13 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝑍} = (Base‘𝑅))
34 eqidd 2607 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝐼} = {𝐼})
35 mpt2eq12 6588 . . . . . . . 8 (({𝑍} = (Base‘𝑅) ∧ {𝐼} = {𝐼}) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3633, 34, 35syl2anc 690 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3724, 29, 363eqtrd 2644 . . . . . 6 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3837opeq2d 4338 . . . . 5 ((𝐼𝑉𝑍𝑊) → ⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩ = ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩)
3938sneqd 4133 . . . 4 ((𝐼𝑉𝑍𝑊) → {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩} = {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩})
4039uneq2d 3725 . . 3 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
411, 40syl5eq 2652 . 2 ((𝐼𝑉𝑍𝑊) → 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
4231ring1 18368 . . 3 (𝑍𝑊𝑅 ∈ Ring)
43 eqidd 2607 . . . . . . . 8 (𝑧 = 𝑎𝑖 = 𝑖)
44 id 22 . . . . . . . 8 (𝑖 = 𝑏𝑖 = 𝑏)
4543, 44cbvmpt2v 6608 . . . . . . 7 (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)
4645opeq2i 4335 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩ = ⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩
4746sneqi 4132 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩} = {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩}
4847uneq2i 3722 . . . 4 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩})
4948lmod1 42074 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5042, 49sylan2 489 . 2 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5141, 50eqeltrd 2684 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  Vcvv 3169  cun 3534  {csn 4121  {ctp 4125  cop 4127  cmpt 4634   × cxp 5023  wf 5783  cfv 5787  cmpt2 6526  2nd c2nd 7032  ndxcnx 15635  Basecbs 15638  +gcplusg 15711  .rcmulr 15712  Scalarcsca 15714   ·𝑠 cvsca 15715  Ringcrg 18313  LModclmod 18629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-n0 11137  df-z 11208  df-uz 11517  df-fz 12150  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-plusg 15724  df-mulr 15725  df-sca 15727  df-vsca 15728  df-0g 15868  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-grp 17191  df-mgp 18256  df-ur 18268  df-ring 18315  df-lmod 18631
This theorem is referenced by:  lmodn0  42077  lvecpsslmod  42089
  Copyright terms: Public domain W3C validator