Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Visualization version   GIF version

Theorem lmod1zr 42792
 Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zr ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)

Proof of Theorem lmod1zr
Dummy variables 𝑎 𝑏 𝑖 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
2 elsni 4338 . . . . . . . . . . 11 (𝑝 ∈ {⟨𝑍, 𝐼⟩} → 𝑝 = ⟨𝑍, 𝐼⟩)
3 fveq2 6352 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑍, 𝐼⟩ → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
43adantl 473 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
5 op2ndg 7346 . . . . . . . . . . . . . . 15 ((𝑍𝑊𝐼𝑉) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
65ancoms 468 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
7 snidg 4351 . . . . . . . . . . . . . . 15 (𝐼𝑉𝐼 ∈ {𝐼})
87adantr 472 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → 𝐼 ∈ {𝐼})
96, 8eqeltrd 2839 . . . . . . . . . . . . 13 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
109adantr 472 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
114, 10eqeltrd 2839 . . . . . . . . . . 11 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) ∈ {𝐼})
122, 11sylan2 492 . . . . . . . . . 10 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 ∈ {⟨𝑍, 𝐼⟩}) → (2nd𝑝) ∈ {𝐼})
13 eqid 2760 . . . . . . . . . 10 (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝))
1412, 13fmptd 6548 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼})
15 opex 5081 . . . . . . . . . 10 𝑍, 𝐼⟩ ∈ V
16 simpl 474 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → 𝐼𝑉)
17 fsng 6567 . . . . . . . . . 10 ((⟨𝑍, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1815, 16, 17sylancr 698 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1914, 18mpbid 222 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩})
20 xpsng 6569 . . . . . . . . . . 11 ((𝑍𝑊𝐼𝑉) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2120ancoms 468 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2221eqcomd 2766 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → {⟨𝑍, 𝐼⟩} = ({𝑍} × {𝐼}))
2322mpteq1d 4890 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
2419, 23eqtr3d 2796 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
25 vex 3343 . . . . . . . . . 10 𝑧 ∈ V
26 vex 3343 . . . . . . . . . 10 𝑖 ∈ V
2725, 26op2ndd 7344 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑖⟩ → (2nd𝑝) = 𝑖)
2827mpt2mpt 6917 . . . . . . . 8 (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖)
2928a1i 11 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖))
30 snex 5057 . . . . . . . . 9 {𝑍} ∈ V
31 lmod1zr.r . . . . . . . . . 10 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
3231rngbase 16203 . . . . . . . . 9 ({𝑍} ∈ V → {𝑍} = (Base‘𝑅))
3330, 32mp1i 13 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝑍} = (Base‘𝑅))
34 eqidd 2761 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝐼} = {𝐼})
35 mpt2eq12 6880 . . . . . . . 8 (({𝑍} = (Base‘𝑅) ∧ {𝐼} = {𝐼}) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3633, 34, 35syl2anc 696 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3724, 29, 363eqtrd 2798 . . . . . 6 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3837opeq2d 4560 . . . . 5 ((𝐼𝑉𝑍𝑊) → ⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩ = ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩)
3938sneqd 4333 . . . 4 ((𝐼𝑉𝑍𝑊) → {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩} = {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩})
4039uneq2d 3910 . . 3 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
411, 40syl5eq 2806 . 2 ((𝐼𝑉𝑍𝑊) → 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
4231ring1 18802 . . 3 (𝑍𝑊𝑅 ∈ Ring)
43 eqidd 2761 . . . . . . . 8 (𝑧 = 𝑎𝑖 = 𝑖)
44 id 22 . . . . . . . 8 (𝑖 = 𝑏𝑖 = 𝑏)
4543, 44cbvmpt2v 6900 . . . . . . 7 (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)
4645opeq2i 4557 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩ = ⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩
4746sneqi 4332 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩} = {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩}
4847uneq2i 3907 . . . 4 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩})
4948lmod1 42791 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5042, 49sylan2 492 . 2 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5141, 50eqeltrd 2839 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ∪ cun 3713  {csn 4321  {ctp 4325  ⟨cop 4327   ↦ cmpt 4881   × cxp 5264  ⟶wf 6045  ‘cfv 6049   ↦ cmpt2 6815  2nd c2nd 7332  ndxcnx 16056  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  Ringcrg 18747  LModclmod 19065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067 This theorem is referenced by:  lmodn0  42794  lvecpsslmod  42806
 Copyright terms: Public domain W3C validator