MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 19645
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 19644 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 19304 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6357  Scalarcsca 16570  Grpcgrp 18105  Ringcrg 19299  LModclmod 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-ring 19301  df-lmod 19638
This theorem is referenced by:  lmodacl  19647  lmodsn0  19649  lmodvneg1  19679  lssvsubcl  19717  lspsnneg  19780  lvecvscan2  19886  lspexch  19903  lspsolvlem  19916  ascl0  20115  ipsubdir  20788  ipsubdi  20789  ip2eq  20799  ocvlss  20818  lsmcss  20838  islindf4  20984  clmfgrp  23677  lmodvslmhm  30690  lflmul  36206  lkrlss  36233  eqlkr  36237  lkrlsp  36240  lshpkrlem1  36248  ldualvsubval  36295  lcfrlem1  38680  lcdvsubval  38756  lmodvsmdi  44437  lincsum  44491  lincsumcl  44493  lincext1  44516  lindslinindsimp1  44519  lindslinindimp2lem1  44520  lindslinindsimp2lem5  44524  ldepsprlem  44534  ldepspr  44535  lincresunit3lem3  44536  lincresunit3lem1  44541  lincresunit3lem2  44542  lincresunit3  44543
  Copyright terms: Public domain W3C validator