MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodpropd Structured version   Visualization version   GIF version

Theorem lmodpropd 19128
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodpropd.1 (𝜑𝐵 = (Base‘𝐾))
lmodpropd.2 (𝜑𝐵 = (Base‘𝐿))
lmodpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lmodpropd.4 (𝜑𝐹 = (Scalar‘𝐾))
lmodpropd.5 (𝜑𝐹 = (Scalar‘𝐿))
lmodpropd.6 𝑃 = (Base‘𝐹)
lmodpropd.7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lmodpropd (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem lmodpropd
StepHypRef Expression
1 lmodpropd.1 . 2 (𝜑𝐵 = (Base‘𝐾))
2 lmodpropd.2 . 2 (𝜑𝐵 = (Base‘𝐿))
3 eqid 2760 . 2 (Scalar‘𝐾) = (Scalar‘𝐾)
4 eqid 2760 . 2 (Scalar‘𝐿) = (Scalar‘𝐿)
5 lmodpropd.6 . . 3 𝑃 = (Base‘𝐹)
6 lmodpropd.4 . . . 4 (𝜑𝐹 = (Scalar‘𝐾))
76fveq2d 6356 . . 3 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐾)))
85, 7syl5eq 2806 . 2 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
9 lmodpropd.5 . . . 4 (𝜑𝐹 = (Scalar‘𝐿))
109fveq2d 6356 . . 3 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
115, 10syl5eq 2806 . 2 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
12 lmodpropd.3 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
136, 9eqtr3d 2796 . . . . 5 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
1413adantr 472 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (Scalar‘𝐾) = (Scalar‘𝐿))
1514fveq2d 6356 . . 3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (+g‘(Scalar‘𝐾)) = (+g‘(Scalar‘𝐿)))
1615oveqd 6830 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g‘(Scalar‘𝐾))𝑦) = (𝑥(+g‘(Scalar‘𝐿))𝑦))
1714fveq2d 6356 . . 3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (.r‘(Scalar‘𝐾)) = (.r‘(Scalar‘𝐿)))
1817oveqd 6830 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r‘(Scalar‘𝐾))𝑦) = (𝑥(.r‘(Scalar‘𝐿))𝑦))
19 lmodpropd.7 . 2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
201, 2, 3, 4, 8, 11, 12, 16, 18, 19lmodprop2d 19127 1 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  LModclmod 19065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067
This theorem is referenced by:  lmhmpropd  19275  lvecpropd  19369  assapropd  19529  opsrlmod  19818  matlmod  20437
  Copyright terms: Public domain W3C validator