MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdi Structured version   Visualization version   GIF version

Theorem lmodsubdi 19693
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr1 28828 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdi.v 𝑉 = (Base‘𝑊)
lmodsubdi.t · = ( ·𝑠𝑊)
lmodsubdi.f 𝐹 = (Scalar‘𝑊)
lmodsubdi.k 𝐾 = (Base‘𝐹)
lmodsubdi.m = (-g𝑊)
lmodsubdi.w (𝜑𝑊 ∈ LMod)
lmodsubdi.a (𝜑𝐴𝐾)
lmodsubdi.x (𝜑𝑋𝑉)
lmodsubdi.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubdi (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))

Proof of Theorem lmodsubdi
StepHypRef Expression
1 lmodsubdi.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdi.x . . . 4 (𝜑𝑋𝑉)
3 lmodsubdi.y . . . 4 (𝜑𝑌𝑉)
4 lmodsubdi.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2823 . . . . 5 (+g𝑊) = (+g𝑊)
6 lmodsubdi.m . . . . 5 = (-g𝑊)
7 lmodsubdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lmodsubdi.t . . . . 5 · = ( ·𝑠𝑊)
9 eqid 2823 . . . . 5 (invg𝐹) = (invg𝐹)
10 eqid 2823 . . . . 5 (1r𝐹) = (1r𝐹)
114, 5, 6, 7, 8, 9, 10lmodvsubval2 19691 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
121, 2, 3, 11syl3anc 1367 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
1312oveq2d 7174 . 2 (𝜑 → (𝐴 · (𝑋 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
14 lmodsubdi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
15 eqid 2823 . . . . . . . 8 (.r𝐹) = (.r𝐹)
167lmodring 19644 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
171, 16syl 17 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
18 lmodsubdi.a . . . . . . . 8 (𝜑𝐴𝐾)
1914, 15, 10, 9, 17, 18rngnegr 19347 . . . . . . 7 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = ((invg𝐹)‘𝐴))
2014, 15, 10, 9, 17, 18ringnegl 19346 . . . . . . 7 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) = ((invg𝐹)‘𝐴))
2119, 20eqtr4d 2861 . . . . . 6 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴))
2221oveq1d 7173 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌))
23 ringgrp 19304 . . . . . . . 8 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2417, 23syl 17 . . . . . . 7 (𝜑𝐹 ∈ Grp)
2514, 10ringidcl 19320 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2617, 25syl 17 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
2714, 9grpinvcl 18153 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2824, 26, 27syl2anc 586 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
294, 7, 8, 14, 15lmodvsass 19661 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉)) → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
301, 18, 28, 3, 29syl13anc 1368 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
314, 7, 8, 14, 15lmodvsass 19661 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
321, 28, 18, 3, 31syl13anc 1368 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3322, 30, 323eqtr3d 2866 . . . 4 (𝜑 → (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3433oveq2d 7174 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
354, 7, 8, 14lmodvscl 19653 . . . . 5 ((𝑊 ∈ LMod ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
361, 28, 3, 35syl3anc 1367 . . . 4 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
374, 5, 7, 8, 14lmodvsdi 19659 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉 ∧ (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
381, 18, 2, 36, 37syl13anc 1368 . . 3 (𝜑 → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
394, 7, 8, 14lmodvscl 19653 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
401, 18, 2, 39syl3anc 1367 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
414, 7, 8, 14lmodvscl 19653 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
421, 18, 3, 41syl3anc 1367 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
434, 5, 6, 7, 8, 9, 10lmodvsubval2 19691 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
441, 40, 42, 43syl3anc 1367 . . 3 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
4534, 38, 443eqtr4rd 2869 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
4613, 45eqtr4d 2861 1 (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  Grpcgrp 18105  invgcminusg 18106  -gcsg 18107  1rcur 19253  Ringcrg 19299  LModclmod 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638
This theorem is referenced by:  lvecvscan  19885  cpmadugsumlemF  21486  nlmdsdi  23292  minveclem2  24031  mapdpglem21  38830  mapdpglem28  38839  baerlem3lem1  38845  baerlem5alem1  38846  baerlem5blem1  38847
  Copyright terms: Public domain W3C validator