MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubvs Structured version   Visualization version   GIF version

Theorem lmodsubvs 19692
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodsubvs.v 𝑉 = (Base‘𝑊)
lmodsubvs.p + = (+g𝑊)
lmodsubvs.m = (-g𝑊)
lmodsubvs.t · = ( ·𝑠𝑊)
lmodsubvs.f 𝐹 = (Scalar‘𝑊)
lmodsubvs.k 𝐾 = (Base‘𝐹)
lmodsubvs.n 𝑁 = (invg𝐹)
lmodsubvs.w (𝜑𝑊 ∈ LMod)
lmodsubvs.a (𝜑𝐴𝐾)
lmodsubvs.x (𝜑𝑋𝑉)
lmodsubvs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubvs (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))

Proof of Theorem lmodsubvs
StepHypRef Expression
1 lmodsubvs.w . . 3 (𝜑𝑊 ∈ LMod)
2 lmodsubvs.x . . 3 (𝜑𝑋𝑉)
3 lmodsubvs.a . . . 4 (𝜑𝐴𝐾)
4 lmodsubvs.y . . . 4 (𝜑𝑌𝑉)
5 lmodsubvs.v . . . . 5 𝑉 = (Base‘𝑊)
6 lmodsubvs.f . . . . 5 𝐹 = (Scalar‘𝑊)
7 lmodsubvs.t . . . . 5 · = ( ·𝑠𝑊)
8 lmodsubvs.k . . . . 5 𝐾 = (Base‘𝐹)
95, 6, 7, 8lmodvscl 19653 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
101, 3, 4, 9syl3anc 1367 . . 3 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
11 lmodsubvs.p . . . 4 + = (+g𝑊)
12 lmodsubvs.m . . . 4 = (-g𝑊)
13 lmodsubvs.n . . . 4 𝑁 = (invg𝐹)
14 eqid 2823 . . . 4 (1r𝐹) = (1r𝐹)
155, 11, 12, 6, 7, 13, 14lmodvsubval2 19691 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
161, 2, 10, 15syl3anc 1367 . 2 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
176lmodring 19644 . . . . . . . 8 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
181, 17syl 17 . . . . . . 7 (𝜑𝐹 ∈ Ring)
19 ringgrp 19304 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2018, 19syl 17 . . . . . 6 (𝜑𝐹 ∈ Grp)
218, 14ringidcl 19320 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2218, 21syl 17 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
238, 13grpinvcl 18153 . . . . . 6 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → (𝑁‘(1r𝐹)) ∈ 𝐾)
2420, 22, 23syl2anc 586 . . . . 5 (𝜑 → (𝑁‘(1r𝐹)) ∈ 𝐾)
25 eqid 2823 . . . . . 6 (.r𝐹) = (.r𝐹)
265, 6, 7, 8, 25lmodvsass 19661 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝑁‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
271, 24, 3, 4, 26syl13anc 1368 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
288, 25, 14, 13, 18, 3ringnegl 19346 . . . . 5 (𝜑 → ((𝑁‘(1r𝐹))(.r𝐹)𝐴) = (𝑁𝐴))
2928oveq1d 7173 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁𝐴) · 𝑌))
3027, 29eqtr3d 2860 . . 3 (𝜑 → ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)) = ((𝑁𝐴) · 𝑌))
3130oveq2d 7174 . 2 (𝜑 → (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁𝐴) · 𝑌)))
3216, 31eqtrd 2858 1 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  Grpcgrp 18105  invgcminusg 18106  -gcsg 18107  1rcur 19253  Ringcrg 19299  LModclmod 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638
This theorem is referenced by:  lspexch  19903  baerlem5alem1  38846  baerlem5blem1  38847
  Copyright terms: Public domain W3C validator