MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvnpcan Structured version   Visualization version   GIF version

Theorem lmodvnpcan 19119
Description: Cancellation law for vector subtraction (npcan 10482 analog). (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod4.v 𝑉 = (Base‘𝑊)
lmod4.p + = (+g𝑊)
lmodvaddsub4.m = (-g𝑊)
Assertion
Ref Expression
lmodvnpcan ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) + 𝐵) = 𝐴)

Proof of Theorem lmodvnpcan
StepHypRef Expression
1 lmodgrp 19072 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmod4.v . . 3 𝑉 = (Base‘𝑊)
3 lmod4.p . . 3 + = (+g𝑊)
4 lmodvaddsub4.m . . 3 = (-g𝑊)
52, 3, 4grpnpcan 17708 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) + 𝐵) = 𝐴)
61, 5syl3an1 1167 1 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → ((𝐴 𝐵) + 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Grpcgrp 17623  -gcsg 17625  LModclmod 19065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-lmod 19067
This theorem is referenced by:  lkrlsp  34892  mapdpglem9  37471  mapdpglem14  37476
  Copyright terms: Public domain W3C validator