MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvs0 Structured version   Visualization version   GIF version

Theorem lmodvs0 18669
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 27099 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs0.f 𝐹 = (Scalar‘𝑊)
lmodvs0.s · = ( ·𝑠𝑊)
lmodvs0.k 𝐾 = (Base‘𝐹)
lmodvs0.z 0 = (0g𝑊)
Assertion
Ref Expression
lmodvs0 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )

Proof of Theorem lmodvs0
StepHypRef Expression
1 lmodvs0.f . . . . 5 𝐹 = (Scalar‘𝑊)
21lmodring 18643 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmodvs0.k . . . . 5 𝐾 = (Base‘𝐹)
4 eqid 2609 . . . . 5 (.r𝐹) = (.r𝐹)
5 eqid 2609 . . . . 5 (0g𝐹) = (0g𝐹)
63, 4, 5ringrz 18360 . . . 4 ((𝐹 ∈ Ring ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
72, 6sylan 486 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
87oveq1d 6542 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = ((0g𝐹) · 0 ))
9 simpl 471 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 𝑊 ∈ LMod)
10 simpr 475 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 𝑋𝐾)
112adantr 479 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 𝐹 ∈ Ring)
123, 5ring0cl 18341 . . . . 5 (𝐹 ∈ Ring → (0g𝐹) ∈ 𝐾)
1311, 12syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (0g𝐹) ∈ 𝐾)
14 eqid 2609 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
15 lmodvs0.z . . . . . 6 0 = (0g𝑊)
1614, 15lmod0vcl 18664 . . . . 5 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1716adantr 479 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 0 ∈ (Base‘𝑊))
18 lmodvs0.s . . . . 5 · = ( ·𝑠𝑊)
1914, 1, 18, 3, 4lmodvsass 18660 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝐾 ∧ (0g𝐹) ∈ 𝐾0 ∈ (Base‘𝑊))) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
209, 10, 13, 17, 19syl13anc 1319 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
2114, 1, 18, 5, 15lmod0vs 18668 . . . . 5 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ((0g𝐹) · 0 ) = 0 )
2217, 21syldan 485 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((0g𝐹) · 0 ) = 0 )
2322oveq2d 6543 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · ((0g𝐹) · 0 )) = (𝑋 · 0 ))
2420, 23eqtrd 2643 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · 0 ))
258, 24, 223eqtr3d 2651 1 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  cfv 5790  (class class class)co 6527  Basecbs 15644  .rcmulr 15718  Scalarcsca 15720   ·𝑠 cvsca 15721  0gc0g 15872  Ringcrg 18319  LModclmod 18635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-mgp 18262  df-ring 18321  df-lmod 18637
This theorem is referenced by:  lmodfopne  18673  lsssn0  18718  lmodvsinv2  18807  0lmhm  18810  lvecvs0or  18878  dsmmlss  19855  pmatcollpwfi  20354  pmatcollpw3fi1lem1  20358  pm2mp  20397  chfacfscmul0  20430  ttgbtwnid  25510  lcdvs0N  35747  hdmap14lem13  36014  lmodvsmdi  41979  linc0scn0  42028
  Copyright terms: Public domain W3C validator