MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdi Structured version   Visualization version   GIF version

Theorem lmodvsdi 18658
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 27083 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdi.v 𝑉 = (Base‘𝑊)
lmodvsdi.a + = (+g𝑊)
lmodvsdi.f 𝐹 = (Scalar‘𝑊)
lmodvsdi.s · = ( ·𝑠𝑊)
lmodvsdi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))

Proof of Theorem lmodvsdi
StepHypRef Expression
1 lmodvsdi.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
2 lmodvsdi.a . . . . . . . . 9 + = (+g𝑊)
3 lmodvsdi.s . . . . . . . . 9 · = ( ·𝑠𝑊)
4 lmodvsdi.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
5 lmodvsdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
6 eqid 2609 . . . . . . . . 9 (+g𝐹) = (+g𝐹)
7 eqid 2609 . . . . . . . . 9 (.r𝐹) = (.r𝐹)
8 eqid 2609 . . . . . . . . 9 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 18640 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 473 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))))
1110simp2d 1066 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
12113expia 1258 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾)) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1312anabsan2 858 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1413exp4b 629 . . 3 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑌𝑉 → (𝑋𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
1514com34 88 . 2 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑋𝑉 → (𝑌𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
16153imp2 1273 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cfv 5790  (class class class)co 6527  Basecbs 15644  +gcplusg 15717  .rcmulr 15718  Scalarcsca 15720   ·𝑠 cvsca 15721  1rcur 18273  LModclmod 18635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-nul 4712
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-lmod 18637
This theorem is referenced by:  lmodcom  18681  lmodsubdi  18692  lmodvsghm  18696  islss3  18729  prdslmodd  18739  lmodvsinv2  18807  lmhmplusg  18814  lsmcl  18853  pj1lmhm  18870  lspfixed  18898  lspsolvlem  18912  clmvsdi  22648  cvsi  22686  lshpkrlem4  33242  baerlem5alem1  35839  baerlem5blem1  35840  hdmap14lem8  36009  mendlmod  36606  lmodvsmdi  41979
  Copyright terms: Public domain W3C validator