MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsdi Structured version   Visualization version   GIF version

Theorem lmodvsdi 18934
Description: Distributive law for scalar product (left-distributivity). (ax-hvdistr1 27993 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdi.v 𝑉 = (Base‘𝑊)
lmodvsdi.a + = (+g𝑊)
lmodvsdi.f 𝐹 = (Scalar‘𝑊)
lmodvsdi.s · = ( ·𝑠𝑊)
lmodvsdi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))

Proof of Theorem lmodvsdi
StepHypRef Expression
1 lmodvsdi.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
2 lmodvsdi.a . . . . . . . . 9 + = (+g𝑊)
3 lmodvsdi.s . . . . . . . . 9 · = ( ·𝑠𝑊)
4 lmodvsdi.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
5 lmodvsdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
6 eqid 2651 . . . . . . . . 9 (+g𝐹) = (+g𝐹)
7 eqid 2651 . . . . . . . . 9 (.r𝐹) = (.r𝐹)
8 eqid 2651 . . . . . . . . 9 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 18916 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))) ∧ (((𝑅(.r𝐹)𝑅) · 𝑋) = (𝑅 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simpld 474 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → ((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)) ∧ ((𝑅(+g𝐹)𝑅) · 𝑋) = ((𝑅 · 𝑋) + (𝑅 · 𝑋))))
1110simp2d 1094 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾) ∧ (𝑌𝑉𝑋𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
12113expia 1286 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑅𝐾)) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1312anabsan2 880 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → ((𝑌𝑉𝑋𝑉) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))
1413exp4b 631 . . 3 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑌𝑉 → (𝑋𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
1514com34 91 . 2 (𝑊 ∈ LMod → (𝑅𝐾 → (𝑋𝑉 → (𝑌𝑉 → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))))))
16153imp2 1304 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  1rcur 18547  LModclmod 18911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-nul 4822
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-iota 5889  df-fv 5934  df-ov 6693  df-lmod 18913
This theorem is referenced by:  lmodcom  18957  lmodsubdi  18968  lmodvsghm  18972  islss3  19007  prdslmodd  19017  lmodvsinv2  19085  lmhmplusg  19092  lsmcl  19131  pj1lmhm  19148  lspfixed  19176  lspsolvlem  19190  clmvsdi  22938  cvsi  22976  lshpkrlem4  34718  baerlem5alem1  37314  baerlem5blem1  37315  hdmap14lem8  37484  mendlmod  38080  lmodvsmdi  42488
  Copyright terms: Public domain W3C validator